
Debian Code Search

Michael Stapelberg

Bachelor-Thesis
Studiengang Informatik

Fakultät für Informatik
Hochschule Mannheim

2012-12-19

Betreuer: Prof. Dr. Jörn Fischer
Zweitkorrektorin: Prof. Dr. Astrid Schmücker-Schend

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 14. Dezember 2012

Thank you

I want to say thanks to Dr. Jörn Fischer, Dr. Astrid Schmücker-Schend, Axel Wagner, Michael
Sommer, Stefan Breunig, Hannes Frederic Sowa, Russ Cox, Matthias Schütz, Cian Synnott,
Kristian Kraljic, Maik Fischer and Tollef Fog Heen for numerous tips, valuable discussions,
proof-reading and any other kind of support.

iii

Abstract

Since the shutdown of Google Code Search in January 2012, developers of free/libre open
source software (FOSS) have lacked a source code search engine covering the large corpus of
open source computer program code.

Without such a tool, developers could not easily find example code for poorly documented
libraries. They could not quickly determine the scope of a problem — for example, figuring
out how many packages call a specific library function with a bug in it.

This thesis discusses the design and implementation of Debian Code Search, a search engine
based on a re-implementation of the ideas behind Google Code Search, but with Debian’s
FOSS archive as a corpus, and using Debian’s clean meta data about software packages to
improve search results.

The work presented includes optimizing Russ Cox’s re-implementation to work with a large
corpus of data, refactoring it as a scalable web application backend, and enriching it with
various ranking factors so that more relevant results are presented first. Detailed analysis of
these main contributions as well as various smaller utilities to update, index and rank Debian
packages are included.

With the completion of this thesis, Debian Code Search is working and accessible to the
public at http://codesearch.debian.net/. Debian Code Search can be used to search
129GiB of source code, typically within one second.

iv

http://codesearch.debian.net/

Abstract

Seit der Abschaltung von Google Code Search im Januar 2012 herrschte ein Mangel an Such-
maschinen für Programmcode, die genügend Open Source Software (FOSS) durchsuchen.
Open Source-Entwickler waren nicht mehr in der Lage, bei der Arbeit mit schlecht doku-
mentierten Bibliotheken schnell Beispielcode zu finden. Sie konnten nicht mehr mit wenig
Aufwand die Auswirkung eines Problems abschätzen, z.B. wie viele Pakete eine Funktion
aufrufen, in der sich ein Fehler zeigte.

Diese Bachelor-Arbeit diskutiert die Architektur und Implementierung von Debian Code
Search, einer Suchmaschine, die Debians FOSS-Archiv als Datengrundlage nutzt und Debians
große Menge an sauberen Metadaten um die Suchergebnisse untereinander zu sortieren.

Debian Code Search baut auf den Codesearch tools, einer Implementation derselben Tech-
nologie, die auch Google Code Search nutzte, auf. Diese Implementation von Russ Cox
wurde optimiert um große Datenmengen zu verarbeiten und so verändert, dass sie in einer
Web-Anwendung genutzt werden kann. Weiterhin wurde sie durch verschiedene Bewer-
tungskriterien angereichert, die dafür sorgen, dass die relevantesten Treffer zuerst angezeigt
werden.

Neben dem Optimieren der Codesearch tools für den Einsatz in einer großen Suchma-
schine wurden im Rahmen dieser Arbeit auch kleine Hilfsprogramme entwickelt, die das
Aktualisieren, Indizieren und Bewerten der Debian-Pakete übernehmen.

Mit der Fertigstellung dieser Arbeit funktioniert Debian Code Search und steht der Öffent-
lichkeit unter http://codesearch.debian.net/ zur Verfügung. Debian Code Search kann
genutzt werden, um 129GiB an Quelltext in üblicherweise weniger als einer Sekunde zu
durchsuchen.

v

http://codesearch.debian.net/

Contents

1 Introduction 1

2 Debian Code Search: An Overview 3
2.1 Target audience and use cases . 3
2.2 Other search engines . 4

3 Architecture 6
3.1 Architecture and user interface design principles 6
3.2 Modifications to the Codesearch tools by Russ Cox 7

3.2.1 Comparison to Google Code Search 7
3.3 High level overview . 8
3.4 Architecture overview . 9
3.5 Resource requirements and load-balancing 10
3.6 Programming language and software choice 13
3.7 Source corpus size . 14
3.8 The trigram index . 15

3.8.1 Trigram index limitations . 16
3.8.2 Looking up trigrams in the index . 17
3.8.3 Lookup time, trigram count and index size 18
3.8.4 Posting list decoding implementation 19
3.8.5 Posting list encoding/decoding algorithm 21
3.8.6 Posting list query optimization . 22

3.9 Updating the index . 24
3.10 Logging and monitoring . 25

3.10.1 Logging . 25
3.10.2 Monitoring . 26

3.11 Caching . 27
3.11.1 Implicit caching (page cache) . 27
3.11.2 Explicit caching . 27

4 Search result quality 30
4.1 Metric definition . 30
4.2 Ranking . 31

4.2.1 Ranking factors which can be pre-computed per-package 31
4.2.2 Ranking factors which depend on the query 31
4.2.3 Ranking factors which depend on the actual results 32
4.2.4 Popularity contest . 33
4.2.5 Reverse dependencies . 34

vi

Contents

4.2.6 Modification time of source code files 35
4.3 Sample search queries and expected results 36
4.4 Result quality of Debian Code Search . 38
4.5 Result latency of Debian Code Search . 41

4.5.1 Trigram lookup latency . 41
4.5.2 Source matching latency . 42

4.6 Language bias . 44
4.7 Duplication in the archive . 45
4.8 Auto-generated source code . 46
4.9 Test setup, measurement data and source code 47
4.10 Overall performance . 48

4.10.1 Measurement setup . 48
4.10.2 Queries per second by query term 50
4.10.3 Queries per second, replayed logfile 50
4.10.4 Real-world response times . 51

4.11 Performance by processing step (profiling) 52
4.11.1 Before any optimization . 52
4.11.2 After optimizing the trigram index 53
4.11.3 After re-implementing the ranking 53

5 Conclusion 54

6 Future Work 55

7 Appendix A: Screenshots 56

Bibliography 58

List of Figures 61

List of acronyms 63

vii

1 Introduction

This work describes the motivation, architecture and evaluation of Debian Code Search, a
web search engine for computer program source code.

With the shutdown of Google Code Search in January 2012, a very useful tool for many
Open Source (FLOSS1) developers vanished. Debian Code Search aims to bring back very fast
(much less than one second) regular expression search across all 129GiB of FLOSS software
currently included in Debian.

Having access to a quick search engine over the entire source code empowers Debian
developers and developers in general: researching which packages use a certain function is
suddenly feasible without first downloading and extracting tens of gigabytes of source code.
Finding and referring to the implementation of a library function in bug reports becomes easy.
Overall packaging quality might increase due to easy access to a vast corpus of packaging
examples.

Other currently available source code search engines do not have up-to-date and high
quality results. Some even target only one specific programming language. Furthermore,
none are available as open source and therefore cannot be used in Debian. Having access to
the code means that Debian-specific improvements can be made and there is no risk of the
search engine disappearing because of a single company’s decision.

The goal of this bachelor thesis is to build and evaluate a FLOSS source code search engine
based on Russ Cox’s Codesearch tools [2]. This involves modifying the tools in such a way
that they can be used within the backend of a web application. Furthermore, since the
Codesearch tools were not specifically designed for use in a large-scale public search engine,
performance bottlenecks and architectural problems or limitations need to be identified and
fixed or circumvented. It is desirable that the resulting system is scalable across multiple
machines so that high demand can be satisfied.

Since the Codesearch tools are written in Go, Debian Code Search is written in Go, too.
While it is not the primary topic of this thesis, the reader will get an impression of how well
Go is suited for this kind of application and where this young programming language still
has weak spots.

Chapter 2 identifies the target audience for Debian Code Search (DCS), lists several use
cases and explains why the Debian project provides a good setting for this work.

Chapter 3 explains the principles and architecture of DCS. This not only includes a high
level overview but also an explanation of the different processes which are involved and how
they can be distributed on multiple machines to handle more load. This chapter also covers
the trigram index and the various optimizations thereof which were necessary to ensure DCS

1 FLOSS stands for Free/Libre Open Source Software

1

1 Introduction

runs fast enough.

Chapter 4 explains how the search engine ranks search results to display the most relevant
results first. It also defines a metric for search engine quality and evaluates Debian Code
Search based on that metric. Finally, it covers limitations of the system and presents overall
performance results, both with synthetic work loads and replayed real-world logfiles.

Chapter 5 summarizes the achievements of this work and chapter 6 gives an outlook on
what can be improved with future work.

2

2 Debian Code Search: An Overview

“Debian is a computer operating system composed of software packages released
as free and open source software primarily under the GNUGeneral Public License
along with other free software licenses.” [21]

Debian Code Search, built during this thesis, is a search engine covering all source code
contained in the Debian archive. By using an existing archive of free software1, the time- and
resource-consuming crawling of the public internet for source code is avoided. Additionally,
Debian Code Search takes advantage of the large amount of high-quality metadata which is
readily available within Debian for ranking search results.

2.1 Target audience and use cases

A public instance of Debian Code Search is available for members of the Debian project and
anyone who is interested in using it. The target audience is primarily any FLOSS developer
or user (especially using Debian) and everybody who deals with Debian packaging.

Typical use cases are:

• The documentation ofmany open source libraries is too sparse to be helpful. By entering
the function name of a library function like XCreateWindow, you can find either the
function’s definition, its implementation or source code which uses the function (to be
used as an example).

• Given the name of an algorithm, find an implementation of that algorithm.

Due to the search result ranking, the implementations that are presented first are very
likely to be widely used and well-tested implementations unless the algorithm is very
specific.

• Given a backtrace with debug symbols of a crashed program, quickly locate and browse
the source code referred to in the backtrace to understand and solve the problem at
hand.

This frees the person looking into the bug report from having to download the relevant
source code first. Instead, the source code can be browsed online without having to
wait for downloads to finish and without having to use disk space for storing source
code. This lowers the barrier and hopefully leads to more people working on these
kind of bug reports.

• Find fragments within Debian packaging files. E.g. find all Debian-specific patches
which use the old gethostbyname for resolving DNS names instead of its replacement

1 Free software as defined by the Debian Free Software Guidelines (DFSG)

3

2 Debian Code Search: An Overview

getaddrinfo2; Or finding all calls of the old ifconfig and route utilities3.

• Judge whether a function is in wide-spread use before depending on it in a project.

An example is the function pthread_mutexattr_setpshared. After having read the
documentation, you might still wonder whether this function is widely supported, for
example on other UNIX operating systems such as FreeBSD, and whether you are using
it as its authors intended. Debian Code Search reveals that the Apache web server uses
the function, so depending on it should not lead to bad surprises.

Being a Debian project, it is important that all parts of the system are available as FLOSS
themselves. This ensures that anyone can send improvements and prevents single points of
failure: when the current maintainer cannot continue for some reason, other people can take
over.

2.2 Other search engines

Of course, the idea of a code search engine is not a novel idea. There are several code
search engines available on the web currently, and others have been available in the past.
Unfortunately, many are too specific because they only support one programming language,
have a very small source code corpus or do not deliver high-quality results.

Nullege http://nullege.com is a language-specific code search engine for Python. Its
corpus contains 21 630 open-source projects4 as of 2012-12-07, typically hosted on
github or SourceForge. Nullege uses its own search engine5.

Unfortunately, more detailed information about nullege is sparse. There is no research
paper about it. Searching for “nullege” on nullege yields no results, therefore it has to
be assumed that nullege is not open source.

Sourcerer sourcerer is a language-specific code search engine for Java. It is a research
project from University of California, Irvine. sourcerer’s corpus contains 1555 open
source Java projects.

Unfortunately, the public version of sourcerer is broken at the moment and only returns
an HTTP 404 error.

Koders http://koders.com is a code search engine for open source code. After being
acquired by Black Duck Software in 2008, the public site remains free to use6, but
(private) code search is a component of the Black Duck Suite. Koders’ corpus contains
3.3 billion lines of code, but is not actively updated at the moment because the whole
Koders software is in flux.7

2 This is worthwhile because getaddrinfo is required for correctly implementing IPv6. Full IPv6 support is a
Debian Release Goal: http://wiki.debian.org/ReleaseGoals/FullIPv6Support

3 Done without a search engine by Adam Borowski in this discussion on the Debian development list:
http://lists.debian.org/debian-devel/2012/08/msg00163.html

4 Nullege searches open source projects according to http://nullege.com/pages/about. The exact number
of projects is visible on http://nullege.com

5 https://twitter.com/nullege/status/7637551310
6 http://en.wikipedia.org/wiki/Koders
7 http://corp.koders.com/about/

4

http://nullege.com
http://koders.com
http://wiki.debian.org/ReleaseGoals/FullIPv6Support
http://lists.debian.org/debian-devel/2012/08/msg00163.html
http://nullege.com/pages/about
http://nullege.com
https://twitter.com/nullege/status/7637551310
http://en.wikipedia.org/wiki/Koders
http://corp.koders.com/about/

2.2 Other search engines

Koders uses ctags, a widely used FLOSS tool for indexing source code, to build its
search index7. Due to Koders’ use of ctags, only code which is written in one of the
41 languages which ctags supports8 is present in Koders’ index. Searches are always
case-insensitive and regular expressions are not supported. However, one can search
specifically for class names (e.g. cdef:parser), method names, interface names and
combinations thereof.

Koders uses a proprietary heuristic to rank code: “Essentially, the more reuse a code
file receives, the more likely it will appear higher in your search results.”7

ohloh code http://code.ohloh.net is the successor to Koders. ohloh code indexes the
projects which are registered at the open source directory site ohloh, currently also
owned by Black Duck Software.

The search features are very similar to those of Koders.

Krugle http://krugle.org is the public code search engine of Krugle, a code search com-
pany which was acquired by Aragon Consulting Group in 2009. Krugle’s product is
Krugle Enterprise, a searchable source code library9.

Features of Krugle include searching for function calls, function definitions, class
definitions, within certain projects, by document type, within a specific time period
and by license.

Krugle’s corpus consists of a mere 450 open source projects10.

Google Code Search Starting out as the intern summer project of Russ Cox [2], Google
Code Search was the first public search engine to offer regular expression searches over
public source code. It was launched in October 2006 and was shut down in January
2012 “as part of Google’s efforts to refocus on higher-impact products” [2].

Search features include filtering by license, file path, package, class or function (or any
combination)11. Every filter supports regular expressions12.

A version of Google Code Search which operates on all repositories hosted at Google
Code is still available at http://code.google.com/codesearch.

The description of its inner workings and the availability of an open-source re-imple-
mentation of its tools were the main motivations for this work.

8 http://ctags.sourceforge.net/languages.html
9 http://venturebeat.com/2009/02/17/aragon-buys-software-code-analysis-co-krugle/
10 http://www.krugle.org/projects/
11 http://code.google.com/codesearch
12 http://www.google.com/intl/en/help/faq_codesearch.html#regexp

5

http://code.ohloh.net
http://krugle.org
http://code.google.com/codesearch
http://ctags.sourceforge.net/languages.html
http://venturebeat.com/2009/02/17/aragon-buys-software-code-analysis-co-krugle/
http://www.krugle.org/projects/
http://code.google.com/codesearch
http://www.google.com/intl/en/help/faq_codesearch.html#regexp

3 Architecture

The best way to bring Debian Code Search to everybody who wants to use it is to implement
it as a web application. A user only needs to have a web browser installed, and a computer
without a web browser is unthinkable for many people. Since there are libraries for HTTP
available in every popular programming language, extending Debian Code Search to offer an
API — for example for Integrated Development Environment (IDE) integration — is easy.

Creating and running a modern web application or web service touches a lot of differ-
ent areas and technologies, such as DNS, HTTP servers, load-balancers for scalability and
redundancy, HTML and CSS, caching, browser compatibility, logging and monitoring.

This chapter first describes the goals and principles after which the architecture was de-
signed and then describes the actual architecture and how it adheres to these principles.

3.1 Architecture and user interface design principles

1. The service should be a pleasure to use and helpful for its users. This includes good
search result quality, a visually pleasing and consistent design and low latency. Marissa
Mayer (formerly at Google, now CEO of Yahoo) says that a delay of 0.5 s caused a
20% drop in search traffic [10]. At Amazon, A/B tests showed that very small delays
(increments of 100 milliseconds) would result in substantial revenue drops.

2. The architecture should follow current best-practices and as such be easy to understand
and maintain. This is an important point to consider when starting a new Debian
project. Ultimately, the goal is to have the software running on machines administered
by Debian System Administration (DSA). Using well-known software as building blocks
reduces the workload for DSA and lowers the barrier for external contributions.

Also, it is very likely that the author of this work will not be able to spend his time on
this project as the single administrator for a long time. Therefore, making it easy for
other people to grasp the system is a good thing for attracting contributors.

3. Stateless design should be preferred wherever possible. In such a design, components
can be stopped/started or exchanged at runtime without a lot of work or negative
consequences for users. This encourages small improvements and a more engaging
workflow. It also decreases the number of ways in which things can go wrong, because
there is no corruption of state leading to undefined behavior.

4. Leverage concurrency and parallelism. For the most part, modern CPUs are being
designed with more cores rather than faster clock speeds [5]. Having a software architec-
ture which works well on such systems allows for performance increases in the future
by simply replacing the hardware, just like it used to be with increasing clock speeds.

6

3.2 Modifications to the Codesearch tools by Russ Cox

3.2 Modifications to the Codesearch tools by Russ Cox

This entire work would not have been possible without Russ Cox’s article “Regular Expression
Matching with a Trigram Index or How Google Code Search Worked” [2]. In this article, he
describes how he built Google Code Search as a summer intern at Google in 2006.

He also released the Codesearch tools with that article, an implementation of the original
concepts in the Go programming language. Debian Code Search (DCS) uses large parts of
the code. Essentially, DCS is a web frontend for the Codesearch tools with a large index.

Several changes have been made to the code:

• The original tools directly printed their results to standard output because they worked
under the assumption that they are always run interactively from a terminal. Functions
have been changed to return an array of results instead. New data types to hold the
results were added.

• DCS displays source code context lines in its search results, while the original Code-
search tools did not. This required changing the algorithm for matching a regular
expression so that it stores previous lines and subsequent lines.

• Posting list decoding was profiled, rewritten in hand-optimized C code and retrofitted
with a custom query optimizer to satisfy performance requirements.

• The indexing tool has been replaced with a DCS-specific indexing tool that skips some
files which are not interesting andwrites the index intomultiple shards due tomaximum
file size limitations of the Go programming language.

• DCS ranks filenames before letting the original Codesearch tools search for results in
these files. Also, the search results are ranked before they are displayed. These changes
are not directly in the code of the Codesearch tools, but they are absolutely necessary
for running a good search engine.

3.2.1 Comparison to Google Code Search

Since both Debian Code Search (DCS) and Google Code Search (GCS) are using the same
technique, it is worthwhile to point out the differences.

• GCS crawled the public internet while DCS indexes source code in Debian.

• GCS had to use heuristics for determining metadata such as license, authors, and so on,
while DCS can use the metadata existing in Debian.

• GCS’s user interface was more sophisticated than DCS’s is currently, likewise for the
search query keywords.

• GCS is closed source, so it cannot be deployed/modified/used anywhere, while DCS is
licensed under the BSD license, which allows for using it within enterprises.

A direct performance or search result quality comparison of DCS with GCS is not possible,
since the latter is offline since January 2012. Even if it were still online, it would not be
possible to run it in a controlled environment for reliable measurements.

7

3 Architecture

3.3 High level overview

Figure 3.1 shows the flow of a request in Debian Code Search. Section 3.4, page 9, covers a
request’s life in more detail, including the various processes which are involved.

User submits search query
(e.g. ”XCreateWindow package:libx11”)

separate keywords from search terms
(e.g. ”package:libx11”)

extract trigrams from search terms
(e.g. [XCr, Cre, eat, ate, teW, …])

lookup trigrams in index

rank 1000 possibly matching files

search files (match regular expression)

enough results?
no

present results
yes

Figure 3.1: High level overview of a request’s flow in Debian Code Search.

8

3.4 Architecture overview

3.4 Architecture overview

HTTP frontend dcs-web
(nginx)

delivers static assets
load-balances requests

index backends (sharded) source-backend

queries backends
generates response

PostgreSQL

Figure 3.2: Architecture overview, showingwhich different processes are involved in handling
requests to Debian Code Search.1

Debian Code Search consists of three different types of processes (dcs-web, index-backend,
source-backend) running “behind” an nginx webserver and accessing a PostgreSQL database
when starting up.

When a new request comes in to http://codesearch.debian.net/, nginx will deliver
the static index page. However, when the request is not for a static page but an actual search
query, say http://codesearch.debian.net/search?q=XCreateWindow, the request will
be forwarded by nginx to the dcs-web process.

dcs-web first parses the search query, meaning it handles special keywords contained in
the query term, e.g. “filetype:perl”, and stores parameters for pagination. Afterwards,
dcs-web sends requests to every index-backend process and gets back a list of filenames
which possibly contain the search query from the index-backends. See section 3.5 on why
there are multiple index-backend instances. See section 3.8, “The trigram index”, on page 15
for details of the index-backend lookup process.

These filenames are then ranked with ranking data loaded from PostgreSQL in such a way
that the filename which is most likely to contain a good result comes first. Afterwards, the
list of ranked filenames is sent to the source-backend process, which performs the actual
searching using a regular expression matcher, just like the UNIX tool grep(1).

As soon as the source-backend has returned enough results, dcs-web ranks them again with
the new information that was obtained by actually looking into the files and then presents
the results to the user.

1 This figure has been created with dia. The icons are gnomeDIAicons, licensed under the GPL.

9

http://codesearch.debian.net/
http://codesearch.debian.net/search?q=XCreateWindow

3 Architecture

3.5 Resource requirements and load-balancing

DNS (Domain Name System)

…

HTTP frontend

HTTP frontend

dcs-web

dcs-web

(nginx)
delivers static assets

load-balances requests

index backends (sharded) source-backend

queries backends
generates response

alternative path

required path

…

PostgreSQL

loaded once

Figure 3.3: Architecture overview with load-balancing possiblities.

10

3.5 Resource requirements and load-balancing

As you can see in figure 3.2, when the user requests http://codesearch.debian.net/,
the browser first needs to resolve the name codesearch.debian.net to an IP address using
the Domain Name System (DNS).This is the first step where the load can be balanced between
multiple servers: the browser will connect to the first IP address it gets, so a DNS server
can just return all IP addresses in a different order (e.g. round-robin). DNS for debian.net is
hosted by the Debian project, so Debian Code Search doesn’t have to setup or maintain any
software or hardware for that.

After resolving the hostname, the browser will open a TCP connection on port 80 to the
resolved IP address and send an HTTP request. This request will be answered by the HTTP
frontend webserver, which is the second step where the load can be balanced and redundancy
can be added: The frontend can split the load between the available backends and requests
can still be answered if a certain number of backends fail.

Furthermore, the backend only has to communicate with the frontend, therefore the burden
of handling TCP connections — especially slow connections — is entirely on the frontend.

Requests which can be answered from the cache (such as static pages, images, stylesheets
and JavaScript files) can be served directly from the frontend without causing any load on
the backend. The HTTP frontend runs on a Debian Code Search machine.

dcs-web receives actual search requests and runs on a Debian Code Search machine. This
might be the same machine as the frontend runs on, or a different, dedicated machine, if the
demand is so high that this is necessary to maintain good performance. To answer a request,
dcs-web needs to perform the following steps:

1. Query all index backends. The index is sharded into multiple index backend processes
due to technical limitations, see section 3.8.1, page 16.

2. Rank the results.

3. Send the results to one of the source backends, which performs the actual searching.

4. Format the response.

Each index backend and source backend corresponds to one process, which typically will
run on the same machine that dcs-web runs on. Should the index size grow so much that it
cannot be held by one machine anymore, index backends can also run on different machines
which are connected by a low-latency network.

Should it turn out that disk bandwidth is a problem, one can run multiple source backends,
one for each disk. These source backend processes can be run on the same machine with
different disks or on different machines, just like the index backend processes.

Index backends, if all deployed on a single machine, need to run on a machine with at
least 8GiB of RAM. Not keeping the index in RAM means that each request needs to perform
a lot of additional random disk accesses, which are particularly slow when the machine does
not use a solid state disk (SSD) for storing the index [28].

Source backends profit from storing their data on a solid state disk (SSD) for low-latency,
high-bandwidth random file access. Keeping the filesystem metadata in RAM reduces disk
access even further. The more RAM the machine which hosts the source backend has, the
better: unused RAM will be used by Linux to cache file contents [24], so search queries for
popular files might never even hit the disk at all, if the machine has plenty of RAM. 16GiB

11

http://codesearch.debian.net/

3 Architecture

to 128GiB of RAM are advisable. More is unnecessary because Debian currently contains
129GiB of uncompressed source code and it is very unlikely that 100% of it needs to be held
in RAM.

Additional metadata used for ranking is stored in PostgreSQL but only loaded into memory
by dcs-web on startup, thus the dotted line.

Every component in this architecture, except for PostgreSQL, communicates with each
other using HTTP, which makes deploying different parts of the architecture on different
machines on-demand as easy as changing a hostname in the configuration file.

12

3.6 Programming language and software choice

3.6 Programming language and software choice

Main programming language

Since this work is based on the existing codesearch tools published by Russ Cox [2], which are
written in Go [16], it is a very natural decision to choose Go for building the web service, too.

Additionally, Go was designed in the first place to be used as a language for building server
software, especially for the web. This is not surprising given that the origin of the language
is Google, where Go is used in production2. Other companies have generally found their
experience with Go to be positive3 and the author of this work has done several successful
projects with Go himself.

Despite being a relatively new language, Go’s performance is good enough for the volume
of requests expected in the near future for Debian Code Search: a typical HTTP service
implemented in Go handles about 1500 to 2000 requests/second [19].

Note that not every little tool used within this project has to be written in Go. Where
appropriate, other languages such as UNIX shell script have been used, for example for
unpacking the Debian source mirror.

Software building blocks

The webserver nginx is used to ease the load on the search backend by serving cached
or static assets, to terminate HTTP connections for end users and to distribute the load
between multiple servers. nginx has very compelling performance [8] with a small memory
and CPU footprint even for thousands of connections. While there are alternatives with
similar performance such as lighttpd, the author prefers nginx for its simpler and cleaner
configuration. Also, nginx seems to be the fastest most popular webserver [18].

To store computed information like the per-package ranking without inventing a custom
file format for every little piece of information, the relational database PostgreSQL is used.
Again, this choice is because of personal preference and familiarity with the software.

Development of the software uses git as the source control management system (SCM).
Experience has shown that it is the most popular SCM for Open Source projects and thus
removes another barrier for contributors.

2 http://golang.org/doc/go_faq.html#Is_Google_using_go_internally
3 https://developers.google.com/events/io/sessions/gooio2012/320/

13

http://golang.org/doc/go_faq.html#Is_Google_using_go_internally
https://developers.google.com/events/io/sessions/gooio2012/320/

3 Architecture

3.7 Source corpus size

The largest amount of data in the whole project is taken up by the source code of all Debian
packages. Due to space and bandwidth considerations, source code is usually distributed
in compressed archives. After mirroring the Debian archive, you end up with 36GiB of
data4. Note that this is only the main distribution of Debian, not the non-free or contrib
distributions. The latter were not included in this project because of licensing.

Since the source code is mirrored in compressed form, it is necessary to decompress it
before being able to search through it. Since DCS needs to search through the files for every
result that is displayed, it makes sense to keep the uncompressed source code permanently.

Filtering out unwanted data in an early stage saves resources in every subsequent step.
Therefore, all packages whose names end in “-data” are not unpacked5. With this step, the
amount of data to process is reduced by 2316MiB to 33GiB.

Unpacking the remaining packages6 results in 129GiB of source code7 in 8 117 714 files.
It is hard to predict the growth of the Debian archive, but reserving 250GiB of storage for
uncompressed source code should leave some room for future growth while being commonly
available in today’s server hardware8.

In comparison to a typical web search engine corpus, our source corpus is small: In 1998,
Google crawled 24 million web pages resulting in 147GiB of data [1].

4 More precisely: 37 226 384B as of 2012-07-25. The Debian archive was mirrored with debmirror -a none
--source -s main -h ftp.de.debian.org -r /debian /debian.

5 It is a Debian convention that packages like games that come with a large amount of data (levels, images,
etc.) are split up into two packages. Being only a convention, removing all packages ending in “-data” also
removes some false-positives such as console-data. A better way of distinguishing data packages from regular
packages would be beneficial.

6 To properly unpack each Debian source package, the tool dpkg-source was used. It takes care of Debian-
specific patches and the various different Debian package formats.

7 With “source code” meaning everything that is contained in the source package. This might include docu-
mentation or other files which are not actually indexed later on.

8 e.g. Hetzner’s http://www.hetzner.de/hosting/produkte_rootserver/ex4 comes with 3 TB of disk
space

14

http://www.hetzner.de/hosting/produkte_rootserver/ex4

3.8 The trigram index

3.8 The trigram index

In order to perform a regular expression match, it is impractical to search through the whole
corpus for each query. Instead, an inverted n-gram index is required:

“[…] [an] n-gram is a contiguous sequence of n items from a given sequence of
text or speech.” [23]

In our case, the text is either the program source code when indexing, or the user’s search
terms when processing a query. An n-gram of size 3 is called a trigram, a good size for
practical use:

“This sounds more general than it is. In practice, there are too few distinct
2-grams and too many distinct 4-grams, so 3-grams (trigrams) it is.” [2]

As an example, consider the following simple example of a search query:

/Google.*Search/ (matching Google, then anything, then Search)

Obviously, only files which contain both the terms “Google” and “Search” should be consid-
ered for the actual regular expression search. Therefore, these terms can be translated into
the following trigram index query:

Goo AND oog AND ogl AND gle AND Sea AND ear AND arc AND rch

This process can be performed with any query, but for some, the translation might lead to
the trigram query matching more documents than the actual regular expression. Since the
trigram index does not contain the position of each trigram, these kinds of false positives are
to be expected anyway.

The full transformation process is described in Russ Cox’ “Regular Expression Matching
with a Trigram Index” [2].

15

3 Architecture

3.8.1 Trigram index limitations

This work is based on Russ Cox’ Codesearch tools [2] (see also 3.2, page 7), which define an
index data structure, index source code and support searching the previously indexed source
code using regular expressions.

Google Code Search was launched in 2006, but Russ Cox’ Codesearch tools are implemented
in Go, a language which was created in late 2007 [6]. Therefore, they cannot be the original
Google Code Search implementation, and have not been used for a large-scale public search
engine.

On the contrary, Russ recommends them for local repositories, presumably not larger than
a few hundred megabytes:

“If you miss Google Code Search and want to run fast indexed regular expression
searches over your local code, give the standalone programs a try.” [2]

One obvious limitation of the index implementation is its size limitation of 4GiB, simply
because the offsets it uses are 32-bit unsigned integers which cannot address more than 4GiB.
Another not so obvious limitation is that even though an index with a size between 2GiB
and 4GiB can be created, it cannot be used later on, since Go’s mmap implementation only
supports 2GiB9.

To circumvent this limitation while keeping modifications to Russ Cox’ Codesearch tools to
a minimum10, a custom indexing tool to replace Codesearch’s cindex has been implemented.
This replacement, called dcsindex, partitions the index into multiple files. Additionally, it
tries to reduce the index size in the first place by ignoring some files entirely.

Partitioning does not only work around the index size limitation, it also comes in handy
when distributing the index across multiple machines. Instead of running six index shards
on one machine, one could run three index shards on each of two machines.

9 This is because len() always returns an int to avoid endless loops in a for i:=0; i<len(x); i++
expression (i is always signed, so len()’s results needs to be, too). An int currently is 32 bits big, even on
64-bit platforms. See http://code.google.com/p/go/issues/detail?id=2188.

10 The more modifications are made, the higher the amount of future maintenance work will be. Since Debian
projects are volunteer-driven [11] most of the time, keeping maintenance work low is a very desirable goal.

16

http://code.google.com/p/go/issues/detail?id=2188

3.8 The trigram index

3.8.2 Looking up trigrams in the index

In order to modify the index data structure in such a way that it is more suited for our purposes,
we first need to understand how it works. Figure 3.4 is an illustration of the different parts
of the index. On the left, you can see each section within the index file. On the right, an
example entry for each of the different sections is provided (except for list of paths, which
is unused in our code). Each section of the index is sorted, and the number of entries of the
name index and posting list index are stored in the trailer.

codesearch index

Trailer

Posting List Index s n a
trigram

0 0 0 8
file count

0 4 3 0
post. list offset

Name Index 0 0 0 8
file ID

0 0 0 8
name offset

List of Posting Lists s n a
trigram

2 5 1 1
file IDs

List of Names g t k - 3 / c o n s t . c \0
filename

List of Paths

Header

Figure 3.4: The Codesearch index format. Trigram lookups are performed as described below.

Assuming the list of all files which contain the trigram “sna” needs to be obtained, the
following steps have to be performed:

1. Seek to the posting list index and perform a binary search to find the entry for trigram
“sna”. The entry reveals the file count and a byte offset (relative to the first byte of the
index) pointing at the entry for “sna” in the list of posting lists.

2. Seek to the entry for “sna” in the list of posting lists and decode the varint [7]-encoded
list of file IDs.

3. For each file ID, seek to the appropriate position in the name index. The byte offset
pointing to the filename in the list of names is now known.

4. For each name offset, seek to the appropriate position in the list of names and read
the filename (NUL-terminated).

17

3 Architecture

3.8.3 Lookup time, trigram count and index size

As you can see in figure 3.5, the trigram lookup time increases linearly with the trigram count.
This is expected: if you look up four trigrams instead of two, it takes about twice as long, no
matter how fast the algorithm for the lookup is.

You can also observe that the index size plays a role: since the average complexity of
binary search is O (log n) (with n being the number of trigrams stored in the index), there is
a logarithmic connection between the lines representing different index sizes.

0 μs
50 μs

100 μs
150 μs
200 μs
250 μs
300 μs
350 μs
400 μs
450 μs

0 20 40 60 80 100 120 140
trigram count

trigram lookup time by trigram count and index size

1MiB
13MiB
75MiB

Figure 3.5: Trigram lookup time grows linearly with the query’s trigram count and logarith-
mically with the index size. 33 queries with varying length were examined.

Figure 3.6 contains measurements for the same queries as figure 3.5, but sorted by combined
posting list length. E.g. if the query is “foob”, and the trigram “foo” has a posting list
containing 300 files, and the trigram “oob“ has a posting list containing 200 files, the combined
posting list length is 500. Looking at the figure, one realizes that as the combined posting list
length increases, the posting list lookup time increases linearly.

0ms

10ms

20ms

30ms

40ms

50ms

60ms

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
combined posting list length

posting list lookup time by posting list length

index.0.idx

Figure 3.6: Posting list decoding time increases linearly with combined posting list length.

18

3.8 The trigram index

3.8.4 Posting list decoding implementation

Section 3.8.3 states that the overall posting list lookup time increases linearly with the posting
list length. This is very comprehensible, but the absolute time required for lookups of large
posting lists intuitively seems very high (≈ 40ms).

Profiling the code revealed that the majority of time is spent actually decoding the posting
lists — the binary search to find the offset and length is absolutely negligible. By dividing the
time through the amount of bytes decoded, our hunch is confirmed by the realization that
7MiB s−1 is far too slow for an Intel Core i7 2600K CPU.

The Go implementation of Uvarint, which comes as part of the standard library in the
package encoding/binary11, is fairly straightforward (see listing 3.1), though using it ob-
viously leads to a lot of function call overhead and it uses 64-bit integers which have to be
converted to 32-bit integers.

Listing 3.1: Go varint decoding
func Uvarint(buf []byte) (uint64 , in t) {

var x uint64
var s uint
for i, b := range buf {

i f b < 0x80 {
i f i > 9 || i == 9 && b > 1 {

return 0, -(i + 1) // overflow
}
return x | uint64(b)<<s, i + 1

}
x |= uint64(b&0x7f) << s
s += 7

}
return 0, 0

}

func (r *postReader) next() bool {
for r.count > 0 {

r.count--
delta64, n := binary.Uvarint(r.d)
delta := uint32(delta64)
r.d = r.d[n:]
r.fileid += delta
return true

}
r.fileid = ^uint32(0)
return false

}

func postingList(r *postReader)
[]uint32 {

x := make([]uint32 , 0, r.max())
for r.next() {

x = append(x, r.fileid)
}
return x

}

x := postingList(r)

Listing 3.2: DCS C varint decoding
s t a t i c __attribute__((hot)) const uint32_t

uvarint(const uint8_t *restrict*data) {
uint32_t b, c, d;
i f ((b = *((*data)++)) < 0x80) {

return b;
} e l s e i f ((c = *((*data)++)) < 0x80) {

return (uint32_t) (b & 0x7F) |
(uint32_t) (c << 7);

} e l s e i f ((d = *((*data)++)) < 0x80) {
return (uint32_t) (b & 0x7F) |

(uint32_t)((c & 0x7F) << 7) |
(uint32_t) (d << 14);

} e l s e {
return (uint32_t) (b & 0x7F) |

(uint32_t)((c & 0x7F) << 7) |
(uint32_t)((d & 0x7F) << 14) |
((uint32_t)(*((*data)++)) << 21);

}
}

in t cPostingList(const uint8_t *restrict
list, in t count, uint32_t *restrict
result) {

in t fileid = ~0;
while (count--) {

fileid += uvarint(&list);
*(result++) = fileid;

}
}

func myPostingList(data []byte, count in t)
[]uint32 {

result := make([]uint32, count)
C.cPostingList((*C.uint8_t)(&data[0]),

C. in t (count),
(*C.uint32_t)(&result[0]))

return result
}

x := myPostingList(r.d, r.max())

11 See http://golang.org/src/pkg/encoding/binary/varint.go, licensed under the BSD license.

19

http://golang.org/src/pkg/encoding/binary/varint.go

3 Architecture

Both code excerpts were shortened for brevity. Support for restrict lists and checks for
index consistency have been removed.

The C implementation makes heavy use of compiler hints (such as the hot attribute, the
restrict keyword and marking variables as const) to enable compiler optimizations. It
uses 32-bit integers and is hand-unrolled. Instead of repeatedly calling r.next() like the Go
code does, the C function cPostingList is called once and all calls of the uvarint function
within cPostingList are inlined by the compiler.

To compare the Go and C versions in a fair manner, figure 3.7 not only shows the Go code
from listing 3.1 above, but also an optimized version which closely resembles the C code from
listing 3.2 (that is, it also uses an inlined, hand-unrolled, 32-bit version of Uvarint). This
optimized Go version has been benchmarked compiled with 6g (the x86-64 version of the gc
compiler) and with gccgo12. Since gccgo uses GCC13, the resulting machine code is expected
to run faster than the machine code of the not-yet highly optimized 6g.

As you can see in figure 3.7, optimizing the Go version yields a speed-up of ≈ 3×. Using
gccgo to compile it yields another ≈ 2× speed-up, but only for large posting lists, interest-
ingly. The optimized C implementation achieves yet another ≈ 2× speed-up, being an order
of magnitude faster than the original Go version for large posting lists.

These results confirm that it is worthwhile to re-implement the posting list lookup in C.

posting list decoding time (median of 100 iterations)

0ms

1ms

2ms

3ms

4ms

5ms

6ms

0k 50k 100k 150k 200k 250k 300k 350k 400k

de
co

di
ng

ti
m
e

posting list length

large lists

original go
opt. go

opt. gccgo
opt. C

8 μs

9 μs

10 μs

11 μs

12 μs

13 μs

40 60 80 100 120 140 160 180 200

de
co

di
ng

ti
m
e

posting list length

small lists

original go
opt. go

opt. gccgo
opt. C

Figure 3.7: The optimized version written in C is faster for both small and large posting lists.
At sufficiently large posting lists, the C version is one order of magnitude faster.

12 using go build -compiler gccgo -gccgoflags '-O3 -s'
13 The GNU Compiler Collection, a very mature collection of compilers with lots of optimizations

20

3.8 The trigram index

3.8.5 Posting list encoding/decoding algorithm

Jeff Dean (Google) presented an optimized version of the varint algorithm in 2009, called
“Group Varint Encoding” [4] (group-varint from here on). The idea is to avoid branch
mispredictions by storing four continuation markers in one byte before the next four values.
A continuation marker indicates the next byte belongs to the current value and is usually
stored by setting the highest bit of the value to 1. Storing four continuation markers allows
for more efficient decoding because the CPU can read one byte and then decode four integers
without any branches.

While this sounds like a reasonable optimization to make and the findings of D. Lemire
and Leonid Boytsov [9] seem to confirm the optimization, a test with the Debian Code Search
posting lists reveals that group-varint is not faster than varint, see figure 3.8. This is most
likely because in our data set, the fast-path is taken most of the time: one byte represents
the entire value and there is no need for bit shifting and multiple loop iterations. Therefore,
as the fast path takes the same branch over and over again, DCS’s decoding does not suffer
from branch mispredictions.

Due to this benchmark, the posting list encoding algorithm was not changed from the
original varint. It would be an interesting area of further research to vary the index shard
size, thus generating different posting list deltas, and benchmark several different algorithms,
such as Lemire’s FastPFOR or others mentioned in the same paper [9]. Unfortunately, Lemire’s
scarcely documented source code is written in C++, which cannot be used with Go at the
moment, and no C implementation is available.

0 μs
10 μs
20 μs
30 μs
40 μs
50 μs
60 μs
70 μs
80 μs

0 10000 20000 30000 40000 50000

de
co

di
ng

ti
m
e

posting list length

posting list decoding time by algorithm

group-varint
varint

Figure 3.8: The simpler varint algorithm is as fast as group-varint for short posting lists
and even faster than group-varint for longer posting lists.

21

3 Architecture

3.8.6 Posting list query optimization

“The query optimizer is the component of a databasemanagement system [DBMS]
that attempts to determine the most efficient way to execute a query.” [25]

Just like a DBMS, our trigram lookup benefits from query optimization. To understand the
benefits which a very simplistic query optimizer brings (for AND queries only), it is helpful to
work with an example. The user input of this example is the query XCreateWindow, which
will be translated into the 11 trigrams T = [Cre, Win, XCr, ate, dow, eWi, eat, ind, ndo,
rea, teW] (not sorted, directly as read from the index). See section 3.8 (page 15) for more
information about the trigram index.

The original code search tools execute AND queries in the order in which the trigrams are
produced, so they would first seek to the posting list P1 for T1 = Cre, decode it, then seek to
the posting list P2 (Win), intersect it with the previous posting list, and so on.

To reduce the amount of memory which is used for intersecting the lists, it is beneficial
to first sort the trigrams ascendingly by the length of their posting lists. In this particular
example, this reduces memory usage from 315KiB to 3KiB.

The final result R of an AND query is the intersection of all posting lists:

R = P1 ∩ P2 ∩ · · · ∩ P11

Since R ⊂ P1, DCS could use P1 instead of R and match the regular expression in all files
of P1. The obvious problem is that P1 contains more entries than R, that is, it contains some
false positives: files which do not contain the search term, but still need to be searched. The
∆Pi−1 column of table 3.1 shows how many false positives are ruled out in each intersection.

trigram #Pi i #∩ ∆Pi−1 ∆R decoding time

Xcr 763 1 763 503 12 μs
teW 5732 2 266 497 6 38 μs
eWi 15 568 3 263 3 3 58 μs
Win 46 968 4 261 2 1 283 μs
Cre 78 955 5 260 1 0 209 μs
dow 97 453 6 260 0 0 344 μs
ndo 107 002 7 260 0 0 249 μs
eat 192 107 8 260 0 0 573 μs
ind 234 540 9 260 0 0 513 μs
rea 299 415 10 260 0 0 813 μs
ate 419 943 11 260 0 0 896 μs

Table 3.1: AND query execution for XCreateWindow. After decoding two of 11 posting lists,
the difference to result R is very small, after reading 5 of 11 posting lists, there is
no difference anymore. The decoding time for posting lists 6 to 11 is wasted time.

Looking at table 3.1, it is obvious that decoding could stop after reading the posting list of
trigram T3 = eWi, but the program cannot know that since it doesn’t know the final result R.

22

3.8 The trigram index

0

5

10

15

20

0 10 20 30 40 50 60

in
te
rs
ec

ti
on

st
ep

s

trigrams

average steps until ∆R = 0

possible steps
necessary steps

Figure 3.9: It takes only a fraction (≈ 1
3) of intersection steps to get to the final result R. 1500

random function and variable names have been tested.

Instead, DCS can only use some kind of heuristic to decide when decoding can stop because
the amount of false positives will not be reduced significantly by reading more posting lists.

Figure 3.9 confirms the hunch: It is (on average) not necessary to perform all intersections
to get to the final result R, or very close.

A heuristic which yields a low number of false positives but still saves a considerable
number of steps (and thus time) is:

Stop processing if ∆Pi−1 < 10 and i > 0.70×n (70% of the posting lists have been decoded).
As figure 3.10 shows, the amount of false positives does not exceed one or two files on average,
while the total speed-up for executing the AND query is ≈ 2×.

0

2

4

6

8

10

200 400 600 800 1000 1200

#
of

fil
es

query #

false positives by skipping decoding

false positives

0ms

2ms

4ms

6ms

8ms

10ms

200 400 600 800 1000 1200

to
ta
lA

N
D
-q
ue

ry
ti
m
e

query #

saved time

saved time
total time

Figure 3.10: With the heuristic explained above, the amount of false positives does
not exceed two files on average; the total speed-up is ≈ 2×.

23

3 Architecture

3.9 Updating the index

The Debian archive changes all the time. New package versions get uploaded, some of them
containing new releases of the software itself and some of them changing the packaging or
adding patches to fix bugs.

To make Debian Code Search pick up these changes, the source mirror has to be synchro-
nized and unpacked and then the DCS index has to be updated.

These updates should be performed at least once per week. Due to the indexing being very
time consuming (≈ 6 h), performing updates once a day puts more load on the server without
adding value. Every three days seems like a good compromise.

The full procedure to update the index goes as follows. First, two temporary folders are
created: one will hold the new files, the other will hold the old files once the new files are
moved to their destination. Then, the source mirror is updated:

mkdir /dcs/{NEW,OLD}
debmirror -a none --source -s main -r /debian /dcs/source-mirror

Now, the tool dcs-unpack takes the source mirror and the old unpacked folder to create
the unpacked-new folder, which contains an unpacked version of the source mirror. All files
that are shared between unpacked and unpacked-new are hardlinked14 to save disk space
and unpack time:

dcs-unpack \
-mirrorPath=/dcs/source-mirror/ \
-oldUnpackPath=/dcs/unpacked/ \
-newUnpackPath=/dcs/unpacked-new/

Afterwards, the unpacked-new folder is indexed into files stored in NEW:

dcsindex \
-mirrorPath=/dcs/NEW/ \
-unpackedPath=/dcs/unpacked-new/ \
-shards=6

Finally, the old and new files are swapped and all index-backend processes are restarted:

mv /dcs/index.*.idx /dcs/OLD/
mv /dcs/NEW/index.*.idx /dcs/
mv /dcs/unpacked /dcs/OLD/unpacked
mv /dcs/unpacked-new /dcs/unpacked
for i in $(seq 0 5); do

systemctl restart dcs-index-backend@$i.service
done

After verifying that no human mistake was made by confirming that Debian Code Search
still delivers results, the OLD and NEW folders can be deleted.

14 Hard links make a file available under more names, see http://en.wikipedia.org/wiki/Hard_link

24

http://en.wikipedia.org/wiki/Hard_link

3.10 Logging and monitoring

3.10 Logging and monitoring

Web server logfiles are usually plain text files, containing one line for each request processed
by the web server.

It is important to start with good logging infrastructure from the very beginning because
logfiles can highlight potential problems with the web application, like requests resulting
in an HTTP Error 500 (Internal Server Error) or requests which are resource-intensive and
therefore cause latency spikes for subsequent requests.

3.10.1 Logging

Since in Debian Code Search’s architecture every request passes through nginx, the HTTP
frontendwebserver, this is the place where loggingmakesmost sense so that the administrator
can get a good overview of the whole system.

HTTP requests are either served directly by nginx (static assets) or passed on to one of the
backends. Requests for static assets are logged into a standard HTTP access logfile, as used
by default in almost all webservers. This logfile will tell us how many people or computer
programs such as web search crawlers accessed Debian Code Search, but not how many of
them actually searched for something.

Requests for the backends are logged to a separate file. This logfile contains the timestamp,
request URL and the response code, but also which backend handled the request and how
long each processing step of the backend took.

log_format upstream '$remote_addr - - [$time_local] "$request" '
'$status 1 upstream [$upstream_addr] '
'[$upstream_response_time]=response request $request_time '
't0 $upstream_http_dcs_t0 '
similar entries omitted for brevity

location = /search {
access_log /var/log/nginx/dcs-upstream.log upstream;
proxy_pass http://dcsweb/search;

}

A resulting logfile entry looks like this:

87.198.192.202 - - [14/Oct/2012:14:38:40 +0200] "GET
/search?q=entry%5C.S HTTP/1.1" 200 1 upstream
[188.111.72.14:28080] [0.512]=response request 0.512 t0
237.24ms t1 106.08ms t2 4.42ms t3 49.57ms numfiles 4538
numresults 40

The slightly peculiar looking format [0.512]=response is necessary to be able to parse
the logfile with POSIX regular expressions later on because nginx will put comma-separated
values in there if it tries multiple backends. When one backend fails to return a reply with a

25

3 Architecture

HTTP 200 status code and nginx falls back to another backend, the entry looks like this:

2001:4d88:100e:23:3a60:77ff:feab:d3ea - - [13/Oct/2012:17:13:18
+0200] "GET /search?q=AnyEvent%3A%3AXMPP HTTP/1.1" 200 1
upstream [188.111.72.14:28080, 127.0.0.1:28080] [0.026,
0.243]=response request 0.269 t0 30.46ms t1 12.42ms t2 0.02ms
t3 199.31ms numfiles 4 numresults 9

The total amount of time necessary to handle this request is 0.269 s. The numbers after
t0, t1, and so on are custom HTTP header values which are filled in from the backend’s
HTTP response. All timing information which is measured is included in this form, thus
automatically ending up in the same logfile as the HTTP requests without any need to
cross-correlate two logfiles from different machines or even implement logging in the backend
at all.

3.10.2 Monitoring

In this case, monitoring means looking at graphs which are generated periodically or on-
demand based on the logging data described above.

The goal is to detect and analyze bugs, performance problems or abuse of the service. For
example, huge spikes in search result latency are very easy to spot even with a cursory glance.
Based on the graph, the corresponding logfiles can then be consulted to find the query which
causes the problem.

To generate graphs from the logfiles, the program collectd was used because it is a
light-weight tool to collect all sorts of information and the author is familiar with it already.
collectd uses round-robin databases via the RRDtool library to store data over a fixed period
of time, typically weeks or months. Graphs are generated with RRDtool’s graphing tool.

To parse the logfiles, collectd’s “tail” plugin was used. The tail plugin follows a (log)file
and parses each line according to a configurable specification. Here is the collectd configu-
ration excerpt for the tail plugin:

<Plugin "tail">
<File "/var/log/nginx/dcs-upstream.log">

Instance "dcs-upstream"
<Match>

Regex "([0-9.]*)\]=response"
DSType GaugeAverage
Type delay
Instance "response"

</Match>
similar entries omitted for brevity

</File>
</Plugin>

The tail plugin uses POSIX regular expressions [26] which do not allow for non-greedy
matching. Therefore, the peculiar log format mentioned above is necessary.

26

3.11 Caching

3.11 Caching

Modern web applications often use caching to trade memory for CPU time or network latency.
As an example, Wikipedia’s featured article of the day is requested a lot, so each ofWikipedia’s
cache servers will have a copy in memory to avoid querying the Wikipedia database servers
and rendering the page. This section discusses which kinds of caching are applicable and
useful in Debian Code Search.

The efficiency of a cache is measured with the cache hit ratio. If, over the time period of
one day, the cache hit ratio is 2% and there were 100 requests, that means 2 search queries
were answered from the cache while 98 search queries were not in the cache. In this section,
not only the cache hit ratio is considered, but also the amount of memory spent on the cache.
For example, if the cache hit ratio could be increased from 2% using 10MiB of memory to
4% using 16GiB of memory, that would not be worthwhile.

3.11.1 Implicit caching (page cache)

Apart from explicitly configured caching, the Linux kernel also provides a page cache [24].
Whenever a block of data is read from the hard disk, it ends up in the page cache, and
subsequent requests for the same block can be answered from memory.

For DCS, a good starting point after booting the server is to load the entire trigram index
into the page cache15 as trigram index lookups are necessary for all queries, so all queries
will profit from that.

Linux uses a Least-Recently-Used (LRU) strategy for its page cache [15]. For DCS, that means
often-queried trigrams will stay in the page cache while other file contents (source code that
needs to be displayed/searched) will evict rarely-used pieces of the trigram index.

The behavior of the page cache is the reason why DCS does not attempt to lock the entire
trigram index in memory: On machines with little RAM (e.g. 8GiB), this would lead to
nearly no RAM available for non-trigram caching, while on machines with a lot of RAM, it is
unnecessary.

While the page cache is a necessary feature to make modern computing as fast as it is,
the obvious problem is that while the data is present, all algorithms still need to process it.
That is, the search engine still needs to decode the posting lists, search through all files, rank
the results and format the page. Another downside of the page cache is that Linux does not
provide an interface to measure the page cache hit ratio.

3.11.2 Explicit caching

Debian Code Search consists of multiple processes which use HTTP to communicate with
each other. A welcome side effect is that sophisticated caches can very easily be added before
every such process. That is, for caching whole search result pages, the frontend nginx web

15 This can be done by simply reading all files:
for f in /dcs-ssd/index.*.idx; do dd if=$i of=/dev/null bs=5M; done

27

3 Architecture

server can simply cache requests to /search. To cache index query results, a new cache
could be added in front of requests to index-backend processes.

When Debian Code Search was launched on 2012-11-06, no explicit caching was config-
ured. Three sample queries were included in the launch announcement16: “XCreateWindow”,
“workaround package:linux” and “AnyEvent::I3 filetype:perl”. These querieswere
selected to demonstrate certain features, but also because they are served quickly.

By monitoring the web server log files after sending the announcement, it quickly became
clear that explicit caching of the /search URL would be helpful: people shared interesting
search queries, such as http://codesearch.debian.net/search?q=fuck17 or http://
codesearch.debian.net/search?q=The+Software+shall+be+used+for+Good%2C+not+
Evil18. As table 3.2 shows, these shared queries are the most popular queries. At least some
of them also profited from explicit caching, e.g. “The Software shall be used for Good, not
Evil” with a cache ratio of 80.2%.

search term hits cached cache ratio

The Software shall be used for Good, not Evil 2066 1657 80.2%
fuck 1247 423 33.9%

workaround package:linux 683 128 18.7%
XCreateWindow 528 71 13.4%

idiot 265 8 3.0%
AnyEvent::I3 filetype:perl 255 35 13.7%

shit 130 10 7.7%
FIXME 116 30 25.9%

B16B00B5 105 45 42.9%
(babefee1|B16B00B5|0B00B135|deadbeef) 94 38 40.4%

Table 3.2: Top 20 search queries and their cache hit ratio from 2012-11-07 to 2012-11-14. The
cache was 500MiB in size and entries expire after 15 minutes; see listing 3.3 (page
29).

The varying cache hit ratios are caused by the different time spans in which the queries are
popular. The top query was so popular that it always stayed in the cache, while other queries
did not stay in the cache for very long.

16 http://lists.debian.org/debian-devel-announce/2012/11/msg00001.html
17 https://twitter.com/antanst/status/266095288266153984 and http://www.reddit.com/r/
programming/comments/12sni3/debian_code_search/c6xz82h

18 Referred to in http://apebox.org/wordpress/rants/456/, a blog post about a harmful software license

28

http://codesearch.debian.net/search?q=fuck
http://codesearch.debian.net/search?q=The+Software+shall+be+used+for+Good%2C+not+Evil
http://codesearch.debian.net/search?q=The+Software+shall+be+used+for+Good%2C+not+Evil
http://codesearch.debian.net/search?q=The+Software+shall+be+used+for+Good%2C+not+Evil
http://lists.debian.org/debian-devel-announce/2012/11/msg00001.html
https://twitter.com/antanst/status/266095288266153984
http://www.reddit.com/r/programming/comments/12sni3/debian_code_search/c6xz82h
http://www.reddit.com/r/programming/comments/12sni3/debian_code_search/c6xz82h
http://apebox.org/wordpress/rants/456/

3.11 Caching

Table 3.2 suggests that even higher cache hit ratios can be achieved by increasing the
expiration time, which is currently configured to 15 minutes. That is, if a cached search result
page is 15 minutes old, the query needs to be re-executed. The expiration time is a trade-off:
if it is too high, users will be served old content for longer than necessary. If it is too low, the
cache does not lead to decreased server load. Of course, in Debian Code Search, content does
not get refreshed that often because the index rebuilds are computationally expensive, so the
expiration time could be much higher. Typically, the index will be updated every three days.

For the moment, the caching configuration is left as-is and can be improved once traffic
patterns stabilize.

Listing 3.3: nginx cache configuration
proxy_cache_path /var/cache/nginx/cache levels=1:2

keys_zone=main:50m
max_size=500m inactive=15m;

proxy_temp_path /var/cache/nginx/tmp;

location = /search {
omitted for brevity ...
set $cache_key $scheme$hosturiis_args$args;
proxy_cache main;
proxy_cache_key $cache_key;
proxy_cache_valid 15m;

proxy_pass http://dcsweb/search;
}

29

4 Search result quality

In order for Debian Code Search to become a useful tool for many developers, it is important
that the quality of search results is high. While humans can intuitively tell a good search
engine from a bad one after using it for some time, this chapter defines a metric with which
the quality of a code search engine can be measured. It also covers the ranking factors used
by DCS, evaluates how well they work, and describes its current limitations.

4.1 Metric definition

Search engines generally present a list of results, ordered by their ranking so that the suppos-
edly best result is at the top. If the user is satisfied with the result that is presented first, the
search engine did the best possible job.

To properly define a metric, some terms need to be clarified first:

u is the user who sends the search query.

q is the search query, e.g. “XCreateWindow”.

r is an individual search result. There is typically more than one result.

|r| is defined as the position of r within the list of all results. The first result has |rfirst| = 0,
the second result has |rsecond| = 1 and so on.

Our penalty for how good the search results for a given query and user are is defined as

P (u, q) = |rsatisfactory|

This penalty P depends on the user and on the query. The earlier the search result with
which the user is satisfied shows up in the search results, the lower the penalty is. Therefore,
if the user is presented with a result that immediately satisfies her, then P (u, q) = 0. If the
user has to skip 40 results before she finds one with which she is satisfied, then P (u, q) = 40.
The best search engine is the search engine for which

medianq∈Q,u∈U (P (u, q))

is minimal. That is, the median of all penalties for a set of queries Q and a set of users U is
minimal. This median defines our metric.

30

4.2 Ranking

4.2 Ranking

When a search engine gets a search query, it is not feasible to compute all matches. Doing so
would take a long time: for XCreateWindow, computing the matches within all files which
are returned by the index query takes about 20 s to complete.

Given that typical web search engine queries are answered in the fraction of a second, this
is clearly unacceptable. Therefore, the ranking is not only used for presenting the matches
in the best order to the user, but also before even computing any matches this reduces the
amount of data which needs to be processed. This kind of ranking is called “pre-ranking”
from now on. Since results with low ranking are unlikely to be requested by the user, they
are not even computed in the first place.

Each of the ranking factors which are presented in the subsequent chapters aims to assign
a single number to each package or source code file.

4.2.1 Ranking factors which can be pre-computed per-package

Popularity contest installations See section 4.2.4 (page 33).

Number of reverse dependencies See section 4.2.5 (page 34).

Number of bugreports While a relation between bug frequency and package popularity
may exist [3], the two previous ranking factors also indicate popularity. Aside from
popularity, it is not intuitively clear whether the number of bug reports should be
weighted in favor of or against any particular package. The number of bugreports has
therefore not been considered as part of the ranking within this work.

File modification time See section 4.2.6 (page 35).

Version number cleanliness A very low version number like 0.1 might be an indication
for an immature FOSS project. Therefore, one might intuitively think that it would be
a good idea to use version numbers as a ranking factor: The higher the version, the
better.

However, the perception of what a version number means differs from project to
project. Some projects use the release date as version number1 while others have
version numbers that asymptotically approach π2.

Due to the wildly varying meaning of version numbers, they have not been used for
ranking within Debian Code Search.

4.2.2 Ranking factors which depend on the query

Query contained in file path When the query string is contained in the file path, the file
should get a higher ranking. This is very simple to implement and computationally
cheap.

1 e.g. git-annex, TeXlive, SLIME, axiom, batctl, caspar, …
2 TEX approaches π, Metafont approaches e, there might be others

31

4 Search result quality

Query is a library symbol When the query matches one of the library’s exported function
symbols, the package should get a much higher ranking. This is computationally cheap
but works only for C-like programming languages and libraries.

Query is in the package’s description The package description is a concise summary
of what the package does. Library packages often list their main areas or available
functions, so it is likely that the user’s search query matches the description, especially
if she is searching for an algorithm name.

4.2.3 Ranking factors which depend on the actual results

Indentation level of the result The vast majority of programming languages represents
different scopes by indentation3. Scopes represent a hierarchy: higher scopes mean
the symbol is more important (e.g. a function definition at the top-level scope in C
is more important than a variable declaration in a lower-level scope). To quickly and
language-independently decide whether one line is more important than another, the
amount of whitespace in front of it is counted.

Word boundary match To prefer more exact results, the regular expression features \b
can be used (match on word boundaries). As an example, \bXCreateWindow\b will
match Window XCreateWindow(but not register XCreateWindowEvent *ev = .
Since the position of the matching portion of text is known, it is used to further prefer
earlier matches over later matches.

Since programming languages are structured from left-to-right, earlier matches (such as
function definitions) are better than later matches (such as function parameter types).

3 Of the most popular languages in Debian, the first 10 (C, Perl, C++, Python, Java, Ruby, ocaml, LISP, Shell,
PHP, see section 4.6 (page 44)) use indentation.

32

4.2 Ranking

4.2.4 Popularity contest

The Debian “popcon” (short for Package Popularity Contest) project was registered in 2003 to
generate statistics regarding which packages are in use in Debian [13]. Users of Debian who
have internet access can opt-in to this project by installing the package popularity-contest.
The Debian installer also offers to install this package when installing a new machine. The
popularity-contest package contains a script which is run once a week and uploads
statistics about the installed packages to Debian servers.

In this work, only one aspect of the popcon data has been used: the package installation
count. This figure describes how many different machines have installed the package in
question. Each machine is identified by a 128-bit UUID [14].

From here on, inst(x) is defined as the number of installations of package x.

Since popcon is an opt-in mechanism, the numbers are to be taken with a grain of salt. The
amount of submissions as of 2012-07-13 is about 120 0004. This is a substantial number, but
not necessarily representative.

While there are similar databases in other Linux distributions, most notably Ubuntu, which
also uses popcon, these have not been used in this work for various reasons: other data is
not as easily available as Debian popcon data is. The latter has been taken from UDD, the
Ultimate Debian Database [12]. Furthermore, when using data from other Linux distributions,
package availability5 and package names often differ.

4 http://popcon.debian.org/stat/sub-***.png [sic!]
5 Software installed without using the package system is not tracked by popcon or any other such database

that I know of.

33

http://popcon.debian.org/stat/sub-***.png

4 Search result quality

4.2.5 Reverse dependencies

Each Debian (binary) package includes dependency information in its Depends field. Assum-
ing package A and B depend on package x, the reverse dependencies rdep(x) are defined as
the list [A, B]. Intuitively, the longer the list of reverse dependencies of any package is, the
more important the package is.

Since both inst(x) and rdep(x) indicate the importance of package x, it has to be ensured
that they are not simply interchangeable. Table 4.1 shows that there is no obvious correlation
between the inst(x) and rdep(x) rankings. Therefore, the number of reverse dependencies
was used to calculate the final ranking.

The formula used to transform the number of reverse dependencies into a ranking factor is:

Rrdep(C) = 1 − 1
|rdep(x)|

rdep-rank package rdep(x) inst-rank ∆
1 eglibc 17 854 47 46
2 gcc-4.7 10 224 25 23
3 qt4-x11 4806 582 579
4 perl 3911 8 4
5 glib2.0 3161 132 127
6 python-defaults 3128 83 77
7 kde4libs 2297 929 922
8 zlib 2109 10 2
9 libx11 1957 86 77

10 cairo 1806 202 192
11 mono 1589 705 694
12 pango1.0 1550 203 191
13 gtk+2.0 1489 231 218
14 gdk-pixbuf 1437 922 908
15 freetype 1336 102 87
16 atk1.0 1326 230 214
17 libxml2 1242 84 67
18 fontconfig 1196 151 133
19 ncurses 1128 2 17
20 python2.6 1127 180 160

xarithm 236.9

Table 4.1: Top 20 packages sorted by rdep with their rdep-rank and inst-rank. As can be seen,
there is no obvious correlation between the rdep and inst metric.

34

4.2 Ranking

4.2.6 Modification time of source code files

In general, newer source code is more interesting than old source code. Either the code was
modified to fix a bug, in which case the user is interested in obtaining the latest version of
the code with as many bugfixes as possible. Or the code was written more recently, meaning
that it is more relevant to the user because it solves a current problem.

In Debian and Linux in general, there are three different timestamps for each file: The access
time (atime), the change time (ctime) and the modification time (mtime). The difference
between change time and modification time is that changes to the inode (permissions or
owner for example) are recorded in the former, while the latter only gets set when the actual
file contents are modified.

One concern with using the mtimes of individual files within a source package is that —
due to packaging mechanisms — the mtimes might be set to the time at which the package
was created, rendering them useless for our purpose. To determine whether this effect has a
measurable impact, for each source package the following analysis was run: Find each file
within the source package which ends in .c or .h (a quick heuristic for recognizing a portion
of our source code), then calculate the difference between each file’s mtime and the package’s
mtime. For each source package, the average difference was stored.

This analysis can be expressed with the following formula (with f being the list of files for
each source package s):

ds =
∑

f |mtime(f) − mtime(s)|
|f |

mtime difference

Average mtime difference [s]

A
m

ou
nt

 o
f s

ou
rc

e
pa

ck
ag

es

0 20000 40000 60000 80000

0
10

20
30

40
50

60

Figure 4.1: Average mtime difference between the source package and its .c or .h files

A little over 60 packages (0.6% of all analyzed source packages) have an average mtime
difference near zero. In these cases, mtime is not a good ranking factor, but 60 packages is a
negligible number.

35

4 Search result quality

4.3 Sample search queries and expected results

The sample queries and expected results listed in this section have been used to evaluate
Debian Code Search. An expected result is a search result which the user would list as the
best result after carefully examining all possible results for the given query. Of course, the
expected results listed here are only a portion of all possible results for each search term.

XCreateWindow This function is a low-level function to create an X11 window. Programs
which use toolkits such as GTK or Qt will never call it directly, but every low-level X11
program with a GUI will call it.

Expected results:
libx11_1.5.0-1/include/X11/Xlib.h:1644
libx11_1.5.0-1/src/Window.c:100

PNG load A generic query which you could type if you wanted to display a PNG image
and didn’t know how to approach the question at all. There are no restrictions on
programming language in this query.

Expected results:
sdl-image1.2_1.2.12-2/IMG_png.c:35
pekwm_0.1.14-2/src/PImageLoaderPng.cc:64
stella_3.7.2-1/src/common/PNGLibrary.cxx:56

strftime is a function provided by the standard C library which stores the specified time in
a string formatted according to the given format. You might search for the implementa-
tion if you are wondering about a small detail or search for an example if you are not
satisfied with the available documentation.

Expected results:
eglibc_2.13-35/time/strftime.c:25
eglibc_2.13-35/time/time.h:199
eglibc_2.13-35/time/strftime_l.c:498

(?i)bloomfilter A bloom filter is a space-efficient probabilistic data structure that is used
to test whether an element is a member of a set [20]. This search query represents the
search for a data structure to find a library, an implementation or a usage example.

Expected results:
webkit_1.8.1-3.1/Source/JavaScriptCore/wtf/BloomFilter.h:38
chromium-browser_20.0.1132.57~r145807-1/src/chrome/browser/ \

safe_browsing/bloom_filter.cc:155
git-annex_3.20120721/Command/Unused.hs:204
eiskaltdcpp_2.2.6-4/dcpp/BloomFilter.h:27
gnunet_0.9.3-2/src/util/container_bloomfilter.c:107
python-bloomfilter_1.0.3-2/pybloom/pybloom.py:87

smartmontools is the name of a package, not a command, which displays the S.M.A.R.T.6

6 “S.M.A.R.T. […] is a monitoring system for computer hard disk drives to detect and report on various indicators
of reliability, in the hope of anticipating failures.” [27]

36

4.3 Sample search queries and expected results

data of hard disks.

Expected results:
smartmontools_5.42+svn3561-3/smartctl.cpp:4

ifconfig is the name of an old tool to configure network interfaces. This search query has
been added to represent searching for a tool which gets invoked by Debian maintainer
scripts.

Expected results:
net-tools_1.60-24.1/ifconfig.c:177
busybox_1.20.0-6/networking/ifconfig.c:4

_NET_WM_PID is the name of an X11 atom which is used to store process IDs on an
X11 window to allow correlating an X11 window with a running process. It is very
similar to XCreateWindow above, but there is no definition, so the expected search
results are only usage examples.

Expected results:
libsdl1.2_1.2.15-5/src/video/x11/SDL_x11video.c:429
qt4-x11_4.8.2-1/src/gui/kernel/qwidget_x11.cpp:846
mplayer_1.0 rc4.dfsg1+svn34540-1/libvo/x11_common.c:742

pthread_mutexattr_setpshared is the name of a function which will mark a pthread
mutex as shared between different processes. One might search for this query to figure
out if this functionality is in widespread use and if it is thus considered safe to use it in
new code.

Expected results:
apache2_2.2.22-9/test/time-sem.c:321

conv.*pam_message is a regular expression which should match the signature of a PAM
conversation callback. The author searched for this to find an example which clarifies
how to allocate memory for the responses which are used in this callback.

Expected results:
pam_1.1.3-7.1/xtests/tst-pam_unix4.c:53
openssh_6.0p1-2/auth-pam.c:555

dh_installinit.*only is a regular expression which should match the utility dh_installinit
within the Debian packaging of some packages. It was used by the author in a dis-
cussion about systemd support in dh_installinit when a question about how to deal
with packages shipping their own systemd service files came up (they have to call
dh_installinit --onlyscripts manually).

Expected results:
busybox_1.20.0-6/debian/rules:170

37

4 Search result quality

4.4 Result quality of Debian Code Search

This section examines the result quality of Debian Code Search for the sample queries defined
in section 4.3. After analyzing howwell each ranking factor performs, a weighted combination
of all ranking factors is constructed which is used in Debian Code Search as the default
ranking.

For every ranking factor described in section 4.2 (page 31), each of the sample queries listed
in section 4.3 (page 36) was run with a special flag causing DCS to list all possible results,
not just the first 40. From the full results, the penalty to the expected results was extracted
(penalty as defined in section 4.1, page 30). The results are listed in table 4.2.

In case there was more than one expected result for a query, the median of the penalties
was used.

query # res none rdep inst path pkg indent boundary

XCreateWindow 3145 1674 57 10 1689 1673 491 1551
PNG load 73 10 11 1 11 10 43 12
strftime 40 048 31 320 50 1455 2952 31 336 8819 11 040
(?i)bloomfilter 1852 920 213 698 424 920 338 357
smartmontools 868 79 174 141 91 75 389 563
ifconfig 9164 6924 1130 90 775 6985 5689 3918
systemctl 553 145 112 39 2 147 59 468
_NET_WM_PID 286 141 50 31 157 153 173 164
pthread…setpshared 348 330 45 46 321 324 294 129
conv.*pam_message 213 104 21 13 104 101 91 105
dh_installinit.*only 40 35 12 0 35 35 24 35

Table 4.2: Ranking penalties per search query. Lower values are better.

Since the number of results differs greatly, instead of using the absolute penalties of each
ranking factor R it is helpful to work with percentages, defined as follows:

PR =
(

1 − R

#res

)

Note that the percentage is substracted from 1 to reverse its meaning: for penalties, lower
is better, but for percentages, higher is better. This allows a more intuitive interpretation of
the results.

The difference caused by each ranking factor can be expressed by the comparison of each
ranking’s percentage with the percentage when using no ranking at all: ∆(R) = PR − Pnone

(in percentage points). The results are listed in table 4.3.

38

4.4 Result quality of Debian Code Search

query # res Pnone ∆rdep ∆inst ∆path ∆pkg ∆scope ∆line

XCreateWindow 3145 .468 +.514 +.529 −.005 .000 +.376 +.039
PNG load 73 .863 −.014 +.123 −.014 .000 −.452 −.027
strftime 40 048 .218 +.781 +.746 +.708 .000 +.562 +.506
(?i)bloomfilter 1852 .503 +.382 +.120 +.268 .000 +.314 +.304
smartmontools 868 .909 −.109 −.071 −.014 +.005 −.357 −.558
ifconfig 9164 .244 +.632 +.746 +.671 −.007 +.135 +.328
systemctl 553 .738 +.060 +.192 +.259 −.004 +.156 −.584
_NET_WM_PID 286 .507 +.318 +.385 −.056 −.042 −.112 −.080
pthread…setpshared 348 .052 +.819 +.816 +.026 +.017 +.103 +.578
conv.*pam_message 213 .512 +.390 +.427 .000 +.014 +.061 −.005
dh_installinit.*only 40 .125 +.575 +.875 .000 .000 +.275 .000
xarithm +.395 +.444 +.168 −.001 +.096 +.046

Table 4.3: Improvements of each ranking over the “none-ranking”. Higher is better.

It is noteworthy that the ∆-values for a query such as smartmontools are mostly negative
since the Pnone percentage already is quite good by chance (90%).

By normalizing the numbers that specify how the different rankings perform in relation to
each other, the final ranking Rweighted can be defined, which is a weighted sum of all rankings
considered above:

Rweighted =0.3427 × Rrdep +
0.3840 × Rinst +
0.1460 × Rpath +
0.0008 × Rpkg +
0.0841 × Rscope+
0.0429 × Rline

To figure out how the weighted ranking performs in comparison to the other rankings,
min(P) is defined as the minimum (best) penalty of all penalties for P . Then, the penalty
achieved with Rweighted is compared against the minimum penalty and the penalty of using
no ranking at all. The results are listed in table 4.4.

As expected, in almost all cases Rweighted performs much better than using no ranking at all
(except when Pnone is already good by chance). In about 50% of the cases, Rweighted is as good
as the single best ranking or better. In the other cases, it performs worse — adding about
three to four pages of search results (with 40 results per page) which the user has to dismiss
before finding the expected result.

39

4 Search result quality

query # res min none weighted ∆min ∆none

XCreateWindow 3144 10 1674 2 −8 −1672
PNG load 72 1 10 2 +1 −8
strftime 40 074 50 31 320 142 +92 −31 178
(?i)bloomfilter 1852 213 920 499 +286 −421
smartmontools 868 75 79 524 +449 +445
ifconfig 9176 90 6924 56 −34 −6868
systemctl 552 2 145 65 +63 −80
_NET_WM_PID 300 31 141 35 +4 −106
pthread…setpshared 339 45 330 42 −3 −288
conv.*pam_message 212 13 104 14 +1 −90
dh_installinit.*only 40 0 35 0 0 −35

Table 4.4: Improvements of the weighted ranking over the best single ranking for each query.
Lower is better.

To verify that the improvements are not just the result of optimizing Rweighted for the specific
test data, a second set of queries, the testing set, has been examined in the same fashion as
the other queries. The results are listed in table 4.5.

query # res min none weighted ∆min ∆none

XkbWriteXKBKeymap 18 0 14 0 0 −14
struct request_rec 35 0 33 0 0 −33
AnyEvent::I3 20 0 14 2 +2 −12
getaddrinfo 18 691 34 14 605 0 −34 −14 605
file-exists-p 7153 70 4470 150 +80 −4320

Table 4.5: Improvements of the weighted ranking over the best single ranking for each testing
set query. Lower is better.

As can be observed in table 4.5, Rweighted also works well for our testing set of queries.

40

4.5 Result latency of Debian Code Search

4.5 Result latency of Debian Code Search

As explained in section 3.1 (“Architecture and user interface design principles”, page 6), low
latency is an important goal for any interactive computer application. This section presents
result latency measurements.

The ideal goal is to not exceed 100ms for the entire timespan from the user pressing the
“Enter” key on his keyboard to the page having been rendered in his/her web browser. A
delay of 100ms is less than humans can perceive, thus making Debian Code Search feel
instant, without any delay at all [17].

Of course, this work only considers the parts of latency which are realistically influencable.
As an example, network latency cannot be optimized for everybody in the world, except by
placing many servers in geographically close locations for the majority of users, but this is
out of scope for this project.

4.5.1 Trigram lookup latency

0

50

100

150

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●●

●
●●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●

●

● ●

●
●●●

●

●

●

●

● ●
●

●

●

● ●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●
● ●

●

●●

●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

● ●

●

●
●

●● ●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●
●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

● ●●

●

● ●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●●
●

●

●

●
●

●●
●
●

●● ●

●

●

●●

●

●
●

●

●

●●
●

●

●

●
●

●

●●

●
●●

● ●

●

●●

●

●

●

●

●

●●
●

●

●

● ●

●

●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●● ●

●
●
●
●●

●

●

●●
●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●● ●

●

●
●

●
●
●

●

●

●

●●

●
●

●
●

●

●
● ●

●

●●●

●

●

●

●

●

● ●
●

● ●●●
●

●

● ●
●
●

●●

●
●●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●
●●●

●●
●

●

●
●●

●
●

●●

●

●

●

●
●
●

●

●

●
●

●●
●●

●

●

●
● ●

●

●

●
●

●
●
●

●

●
●●●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●●

● ●●

●

●
●

●

●●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●
●

●●

●

●

●
●
●

●

●

● ●

●
●

●
●
●

●

●

● ●
●●●

●

●
●●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●
●●

●

●●

●
● ●

●

●
●
●
● ●

●

● ●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

● ●

●

●●

●

●●●
●

●

●

●
● ●

●

●

●

●
●

●

●●
●

●
●● ●
●

●●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●

● ●

●

●

●
●

●

●

●
● ●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●
●
●●
●
●

●

●

●

●●

●●

●

●

●

●

●

●
● ●

●
●

●

●

●●

●

●

● ●●

●

●

●

●

●
●

●

● ●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●●

●
●

●●
●

●

●
●

●

●●

●

●

●
●

●
● ●

●

●

●
●

●
●

●

●
●

●

●
●●

●●

●

●

●

●
●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

● ●
●

●●
●

●

●
●

●

●●●

●

●

●
●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●●●

●
●

●

●
●

●

●
●

●

●
●●

●

●
●

●● ●
●

● ●
●

●
●●

●

● ●● ●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●

●

● ●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●

0 1000 2000 3000 4000 5000
number of potential results

tr
ig

ra
m

 lo
ok

up
 la

te
nc

y
[m

s]

Trigram lookup latency

Figure 4.2: Trigram lookup latency distribution by number of results. Each point represents
one out of 1500 randomly chosen function or variable names.

As you can see in figure 4.2, the lookup latency for most queries is lower than 50ms, and
only few queries exceed 100ms. The number of potential results influences the latency
somewhat, but not very strongly. This is in line with the results of section 3.8.4 (“Posting list
decoding implementation”, page 19) and section 3.8.6 (“Posting list query optimization”, page
22), in which the trigram lookup step was optimized.

Figure 4.3 reveals that most queries actually have a trigram lookup latency between ≈0ms
and 30ms, which leaves us with roughly 50ms (plus network latency outside of our control)

41

4 Search result quality

Histogram of trigram lookup latency

trigram lookup latency [ms]

F
re

qu
en

cy

0 10 20 30 40 50 60 70 80 90 100

0
50

15
0

25
0

Figure 4.3: Histogram of trigram lookup latency

to stay within the goal of 100ms.

4.5.2 Source matching latency

The source matching step is where the potentially matching files from the trigram lookup
are actually searched/matched for the query string.

Due to the complex nature of the source code (a regular expression matcher), it is out
of scope for this work to perform algorithmic optimizations or code optimizations on this
step. This is unlike the trigram lookup, which was small and understandable enough to be
re-implemented in optimized C.Therefore, the regular expression matching of the Codesearch
tools has been used as-is.

Figure 4.4 (page 43) shows that the source matching latency spans a larger range (from 0ms
up to 200ms) than the trigram lookup latency. Furthermore, it does not linearly correlate
with the number of potential results (the amount of input files for source matching).

42

4.5 Result latency of Debian Code Search

0

50

100

150

200

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●●●
●
●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●
●●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●
●

●

●

●

●

●
●
●●

●
●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●
●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●●●

●

●
●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0 1000 2000 3000 4000
number of potential results

so
ur

ce
 m

at
ch

in
g

la
te

nc
y

[m
s]

Source matching latency

Figure 4.4: Source matching latency distribution by number of potential results (the number
of files which are searched for matches)

Histogram of source matching latency

source matching latency [ms]

F
re

qu
en

cy

0 20 40 60 80 100 120 140 160 180 200

0
50

10
0

15
0

20
0

Figure 4.5: Histogram of source matching latency. Most source matching is done within 20ms,
but the tail is considerably longer than for trigram lookup latency.

43

4 Search result quality

4.6 Language bias

A consequence of choosing the Debian archive as corpus is that a lot of software is not
included. Also, Debian Code Search clearly is biased in favor of certain languages.

To analyze the distribution of languages in the Debian archive, the debtags meta informa-
tion [30] has been used. debtags uses faceted classification and allows us to count the number
of packages tagged with the facet implemented-in::perl for example. The result of this
analysis can be seen in table 4.6.

The whole ecosystem of Objective C makes for a striking example of language bias: Objec-
tive C is on position 14 in table 4.6 with only 62 packages being implemented in Objective C.
Yet, Objective C ranks place 3 in the TIOBE index for August 20127. The explanation for this
observation is that Objective C is the native language for writing software in Apple’s OS X
and on Apple’s iOS. It is therefore not surprising that it is a popular language as measured
by TIOBE but not a popular language as per table 4.6.

Another observation is that the distribution of languages over all source code repositories
hosted at github.com8 does not match table 4.6 at all. The cause for this could be that program-
mers in different languages use source control management systems (SCMs) to a varying
degree. However, it seems unlikely that this is the only reason. Instead, considering the fact
that top github languages are JavaScript and Ruby, one can conclude that the rising amount
of web applications is underrepresented in Debian and traditional desktop applications are
underrepresented on github.

position # pkg language position # pkg language

1. 4448 c 13. 77 c-sharp
2. 3300 perl 14. 62 objc
3. 1698 c++ 15. 56 tcl
4. 1077 python 16. 48 fortran
5. 307 java 17. 43 ecmascript
6. 292 ruby 18. 42 vala
7. 207 ocaml 19. 42 scheme
8. 200 lisp 20. 36 lua
9. 199 shell 21. 19 ada

10. 156 php 22. 15 pike
11. 96 r 23. 3 ml
12. 93 haskell 24. 0 erlang

Table 4.6: Debian packages with implemented-in::language tag per language

7 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
8 https://github.com/languages/

44

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://github.com/languages/

4.7 Duplication in the archive

4.7 Duplication in the archive

It is noteworthy that there is some duplication of soure code in the Debian archive. One
example is the WebKit layout engine used by Apple Safari and Google Chrome, for example.
WebKit code can be found in the WebKit package, in the Qt framework, in Chromium and in
PhantomJS.

In general, such duplication is unfortunate because it makes maintenance of the projects
harder, that is, bugs have to be fixed in more than one place. Then again, it sometimes reduces
the potential for bugs, for example when Qt doesn’t use whichever version of WebKit is
installed on the system, but only uses its well-tested, bundled version.

From the perspective of Debian Code Search or any code search engine, duplication is
unfortunate because users might get multiple search results containing the same source code
for a single query (e.g. a user searches for “(?i)bloomfilter” and gets presented with
JavaScriptCore/wtf/BloomFilter.h from qt4, webkit, etc.). This is undesirable. Let us
assume the limit for source code results is fixed at, say, 10 results per page. When the same
result is presented three times, the user effectively is presented with 8 results instead of 10,
and he might get frustrated because he needs to realize that the presented results are identical.

Detecting duplicates (or very similar source code, e.g. a slightly different version of WebKit)
can be done by applying metrics such as the Levenshtein distance9. The problem is not
prevalent enough that it would be worthwhile (within this work) to design and apply such a
technique on our entire corpus.

Within Debian, there is also a project to reduce the number of duplicates to avoid security
issues from unapplied bugfixes to embedded copies of code10.

9 “[…] the Levenshtein distance is a string metric for measuring the difference between two sequences. Infor-
mally, the Levenshtein distance between two words is equal to the number of single-character edits required
to change one word into the other.” [22]

10 http://lists.debian.org/debian-devel/2012/07/msg00026.html

45

http://lists.debian.org/debian-devel/2012/07/msg00026.html

4 Search result quality

4.8 Auto-generated source code

There are several open-source projects11 which include automatically generated source code
to a varying degree.

One example is XCB, the X11 C Bindings12. The project consists of an XML protocol
description of the wire-level X11 protocol (xcb-proto) and a script to generate the X11 C
Bindings themselves (c_client.py).

Where the very old libX11 contains a lot of old hand-written code, XCB wants to simplify
maintenance of such code by keeping the protocol description in an XML file.

Having a separate description from the code generator is also beneficial since it allows for
X11 bindings for other programming languages to be generated rather easily. An example is
xpyb, the X Python Binding.

The problem with automatically generated source code is that it cannot be indexed by
Debian Code Search for multiple reasons:

• Running third-party code is a potential security risk. This is mitigated by the code
being uploaded only by trusted Debian Developers, but nevertheless it might make
Debian Code Search unstable.

• Running code before indexing makes the indexing process slow.

• Running code requires the dependencies to be present, which can be solved by installing
the dependencies and running the code in a chroot-environment13, but that requires a
lot more resources than simply indexing files.

On the other hand, automatically generated source code is often, and certainly in the case
of XCB, not very valuable to read. This is similar to how the generated assembler code of any
advanced C compiler is likely to not be easy to read. The unavailability of auto-generated
code in Debian Code Search is thus not a very big loss, but undesirable nevertheless.

An acceptable workaround for open-source projects might be to include a pre-generated
version (if feasible) in their releases.

11 Undoubtedly also closed-source projects, but that’s out of scope for this work.
12 http://xcb.freedesktop.org/
13 see pbuilder

46

http://xcb.freedesktop.org/

4.9 Test setup, measurement data and source code

4.9 Test setup, measurement data and source code

All benchmarks have been performed on the following desktop computer:

• Intel® Core™ i7-2600K (3.40GHz)

• Intel DH67GD motherboard

• 4 x G.SKILL F3-10666CL7-4GBXH ⇒ 16GiB DDR3-RAM 1333MHz

• Intel SSDSC2CT18 (180GiB SSD)

The computer was running Linux 3.5 and CPU frequency scaling was disabled to not
interfere with the measurements and to ensure the CPU runs with maximum performance:

for i in /sys/devices/system/cpu/cpu[0-9]; do
echo performance > $i/cpufreq/scaling_governor

done

All measurement data used for generating graphs or tables is available at
http://codesearch.debian.net/research/14.

The source code of Debian Code Search is available on Github:
https://github.com/debiancodesearch/dcs

14 Mirrored at http://michael.stapelberg.de/dcs/ in case the service will be shut down at some point
in time.

47

http://codesearch.debian.net/research/
https://github.com/debiancodesearch/dcs
http://michael.stapelberg.de/dcs/

4 Search result quality

4.10 Overall performance

Of course, outside of theoretical simulations, a search engine is not used by precisely one
person at a time, but more people might want to access it. This section examines the overall
performance of Debian Code Search by simulating real-world usage in various ways.

This section seeks to determine the number of queries per second (qps) that Debian Code
Search can handle. Keep in mind that this number is a worst-case limit: Only actual search
queries are measured, while the time which users normally spend looking at the search results
or accessing static pages (the index or help page for example) is neglected. That is, assuming
DCS could handle 5 queries per second, that means that in the worst case, when there are
6 people who want to search in the very same second, one of them has to wait longer than
the others (or everyone has to wait a little bit longer, depending on whether requests are
artificially limited to the backend).

4.10.1 Measurement setup

Tomeasure HTTP requests per second for certain access patterns, there are multiple programs
available:

ApacheBench Shipping with the Apache HTTP server, this tool has been used for years to
measure the performance of the Apache server and others. While it supports a gnuplot
output format, the gnuplot output is a histogram since it is sorted by total request time,
not sequentially.

siege A multi-threaded HTTP load testing and benchmarking utility.

weighttp Developed as part of the lighttpd project, weighttp describes itself as a lightweight
and small benchmarking tool for webservers. It is multi-threaded and event-based.
weighttp’s command-line options are similar to those of ApacheBench, but it does not
support dumping the raw timing measurements.

httperf A single-threaded but non-blocking HTTP performance measurement tool. Its
strength is its workload generator, with which more realistic scenarios can be tested
rather than just hitting the same URL over and over again.

Unfortunately, none of these tools provides away of obtaining the raw timingmeasurements.
Therefore, an additional parameter has been implemented in dcs-web which makes dcs-web
measure and save the time spent for processing each request. This measurement file can later
be processed with gnuplot.

To verify that these measurements are correct, two lines of the very simple weighttp source
code have been changed to make it print the request duration to stdout. Then, dcs-web was
started and the benchmark was run in this way:

export DCS="http://localhost:28080"
./dcs-web -timing_total_path="dcs-total -1.dat" &
./weighttp -c 1 -n 100 "$DCS/search?q=XCreateWindow" \

| grep 'req duration ' > weighttp -vs-internal.raw

48

4.10 Overall performance

100 ms
105 ms
110 ms
115 ms
120 ms
125 ms
130 ms
135 ms
140 ms

0 20 40 60 80 100

re
sp

on
se

ti
m
e

request

weighttp vs. builtin timing

weighttp -c 1 -n 100 dcs-total

Figure 4.6: Comparison of response timing between HTTP benchmarking tool weighttp and
the dcs-internal measurements. The figure confirms that weighttp and the internal
measurements are working correctly. The lines differ slightly due to overhead for
request parsing and receiving the reply, which is not contained in dcs-total.

Figure 4.6 shows that the measurements strongly correlate and from now on, it can be
assumed that both, dcs-web measurements and weighttp work properly.

The aforementioned performance measurement tools allow for setting the number of con-
current requests. It is obvious that by using precisely one concurrent request (that is, the next
request can only start after the current one finished), the benefits of a multi-core computer
are not leveraged at all, and neither do requests in the real world wait for other requests to
finish.

As you can see in figure 4.7, there are noticeable differences between one concurrent request
and four concurrent requests, but afterwards the results stay the same except for queries
which are answered very quickly. This fits our expectation since the machine on which the
software is benchmarked uses a quad-core processor.

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10

qu
er
ie
s
pe

r
se
co

nd

concurrent requests

Effect of higher concurrent requests

XCreateWindow
strftime

systemctl
_NET_WM_PID

Figure 4.7: On a quad-core processor, using four concurrent requests yields best results.

49

4 Search result quality

4.10.2 Queries per second by query term

Since different queries have a different number of files which have to be searched, the time
necessary to process each query depends on the query. Therefore, making a statement such as
“DCS handles 14 queries per second on this machine” is not possible without also specifying
which query was used to figure out this number.

query # res qps time

XCreateWindow 3116 32 3 s
_NET_WM_PID 266 75 1 s
systemctl 739 7 12 s
ifconfig 8458 26 3 s
(?i)bloomfilter 1494 5 19 s
smartmontools 723 28 3 s
strftime 37 613 15 6 s
PNG load 71 6 16 s
pthread_mutexattr_setpshared 323 17 5 s

xarithm 23.4

Table 4.7: Queries per second by query term. Higher is better.

The above queries do not necessarily reflect real-world queries. A much more interesting
way of determining the queries per second rate is looking at a (popular) live system with
real-world queries.

4.10.3 Queries per second, replayed logfile

The performance measurement tool httperf supports accessing URLs from a file. For this
measurement, the first 250 queries of the real world query log during the timespan from
2012-11-06 to 2012-11-14 have been converted to httperf’s wlog format, then httperf was
started like this:

$ httperf --wlog=wlog --port 38080 --ra 4 --num-conn 250
Total: connections 250 requests 250 replies 250 test-duration 83.407 s
[...]
Request rate: 3.0 req/s (333.6 ms/req)
Request size [B]: 96.0

Reply rate [replies/s]: min 0.0 avg 3.1 max 11.2 stddev 3.0 (16 samples)
Reply time [ms]: response 5727.4 transfer 51.1
Reply size [B]: header 201.0 content 35557.0 footer 2.0 (total 35760.0)
Reply status: 1xx=0 2xx=236 3xx=0 4xx=14 5xx=0

As you can see, the rate of three queries per second is much lower than xarithm = 23.4 in
table 4.7 with our synthetic way of benchmarking.

50

4.10 Overall performance

4.10.4 Real-world response times

This section presents different aspects of the same data as has been analyzed in section 4.10.3.

Figure 4.8 demonstrates that most requests are handled in less than one second.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 s 2 s 4 s 6 s 8 s 10 s

am
ou

nt
of

re
qu

es
ts

seconds

real-world request duration

total request duration

Figure 4.8: Most real-world requests are handled in less than one second.

Figure 4.9 reveals that the processing step which takes the most time is searching through
the files to determine any actual matches. This is to be expected because the regular expression
matching algorithm has not been optimized and the server on which Debian Code Search
ran at the time during which the data was collected only has spinning hard disk drives, no
solid state disks.

0 s

2 s

4 s

6 s

8 s

10 s

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ti
m
e

query #

real-world processing steps

time to first regexp result (t0)
time to receive and rank (t1)

time to sort (t2)
time to first index result (t3)

Figure 4.9: Searching files takes the most time, followed by trigram index lookups.

You can also observe several spikes. The biggest one in the middle of the graph was caused
by a denial of service (DoS) attack15, others are caused by computationally intensive queries.

15 This is not obvious from the graph, but the log files confirm that it was a DoS attack.

51

4 Search result quality

4.11 Performance by processing step (profiling)

When optimizing software, the first step is to profile the software to see which part of it is
actually slow. This is important because intuitively, one might have an entirely different part
in mind, for example an algorithm which has some potential for optimization, while there
are many other low-hanging fruit which can yield even greater performance improvements.

To profile which parts of Debian Code Search are slow, additional parameters have been
added to dcs-web, just like in section 4.10.1. Since the code is so simple, the additional
measurements do not influence the performance itself in any noticeable way:

func Search(w http.ResponseWriter , r *http.Request) {
var t0, t1 time.Time
t0 = time.Now()
// ... send request to index-backend ...
t1 = time.Now()
// ...
w.Header().Add("dcs-t0", fmt.Sprintf("%.2fms",

float32(t1.Sub(t0).Nanoseconds())/1000/1000))
}

4.11.1 Before any optimization

Figure 4.10 shows that a substantial amount of time is used for the trigram index lookup:
It takes about 40ms until the first result appears. Note that results are ranked as they are
received, so the “ranking” step covers receiving and ranking the files.

0 ms

20 ms

40 ms

60 ms

80 ms

100 ms

0 20 40 60 80 100

re
sp

on
se

ti
m
e

request

Response split into steps

total time
grep

sorting
ranking

n-gram

Figure 4.10: The trigram index lookup (“n-gram”) took almost as long as the actual searching
of files containing possible matches (“grep”) before optimization.

52

4.11 Performance by processing step (profiling)

4.11.2 After optimizing the trigram index

Section 3.8.4 (“Posting list decoding implementation”) and 3.8.6 (“Posting list query optimiza-
tion”) explain the different optimizations to the trigram index in depth.

After these optimizations, the trigram lookup step is ≈ 4× faster. Since the “ranking” step
also contains trigram result retrieval, it is also faster.

0 ms

20 ms

40 ms

60 ms

80 ms

100 ms

0 20 40 60 80 100

re
sp

on
se

ti
m
e

request

Response split into steps

total time
grep

sorting
ranking

n-gram

Figure 4.11: Optimizing the trigram lookup cuts the total time in half.

4.11.3 After re-implementing the ranking

It turns out that the cause for the long ranking time in figure 4.11 was that the implementation
used regular expressions. By replacing the use of regular expression with hand-optimized,
equivalent code, the time used for ranking could be cut to half, as you can observe in figure
4.12:

0 ms

20 ms

40 ms

60 ms

80 ms

100 ms

0 20 40 60 80 100

re
sp

on
se

ti
m
e

request

Response split into steps

total time
grep

sorting
ranking

n-gram

Figure 4.12: Replacing regular expression matching with a loop cuts the ranking time in half.

Intuitively, onewould now try to optimize the grep step. However, as it is rather complicated
and not well-documented, this is beyond the scope of this work.

53

5 Conclusion

This thesis has demonstrated that it is possible to implement a search engine over a large
amount of program source code in the setting of an Open Source Linux distribution such as
Debian.

While optimizations of the trigram index were necessary, it turned out that the simple
design of DCS which came to mind first was good enough: Debian Code Search could handle
the load which the near-simultaneous announcement via multiple channels (Debian mailing
lists, twitter, reddit, …) caused, with only a few hiccups during the 2-3 day period of high
load. It should be stressed that in this initial deployment, only one server was used.

Debian Code Search uses metadata from Debian such as the package’s popularity, package
dependencies, its description, and others. This fact validates the usefulness of Debian’s
rigid quality assurance processes such as the recent switch to machine-readable copyright
information.

After the launch of DCS, many people have written mails in which they thank me, and
the general sentiment was very positive. But not only do Debian developers and users feel
positive about it, they also use it in bug reports, when chatting and when discussing on
mailing lists to prove their points, link to a specific line in the source, or as a way to analyze
the scope of a problem.

54

6 Future Work

Of course, there is a lot of potential for future work. Depending on the acceptance and success
of the search engine within the global developer community, one has to think about further
optimizing the search engine and/or scaling its deployment. A few simple but time-consuming
ideas are to further optimize the trigram index format for the purpose of DCS.

Depending on the actual real-world usage (more simple identifier/word lookups or more
complex regular expressions?) it might be worthwhile to build a so-called lexicon and build a
trigram index based on that (as described in “Partially specified query terms” [29]). One could
then perform the regular expression matching on the lexicon instead of the actual files and
save searching through a lot of data.

To ease the load on the trigram index for case-insensitive queries, one could look into ex-
tending the dcsindex program to write two different types of index: one with case-sensitive
trigrams and one with case-insensitive trigrams. While this would increase the index size,
although not by 2×, it would considerably speed up case-insensitive queries.

Furthermore, the search engine currently only works on text. It does not understand
the different programming languages which exist and therefore cannot provide some more
advanced features like 100% precise cross-links between implementation and definition. Mod-
ifying the code to closely work together with a compiler, which is the most obvious tool for
language analysis, is a complex endavour which has to be done for each language one wants
to support.

Another big and time-consuming task is to evaluate the ranking in a better way, perhaps
with studies, by doing A/B testing or by data-mining the real-world query logs and signals.
Possibly, the ranking could even be adjusted in reaction to the user behavior, without any
manual interaction.

55

7 Appendix A: Screenshots

Figure 7.1: Start page of Debian Code Search

56

Figure 7.2: Search results for XCreateWindow

Figure 7.3: Displaying source code

57

Bibliography

[1] Brin, S. ; Page, L.: The anatomy of a large-scale hypertextual Web search engine. In:
Computer networks and ISDN systems 30 (1998), Nr. 1-7, S. 107–117

[2] Cox, Russ: Regular Expression Matching with a Trigram Index. (2012). http://swtch.
com/~rsc/regexp/regexp4.html

[3] Davies, J. ; Zhang, H. ; Nussbaum, L. ; German, D.M.: Perspectives on bugs in the
debian bug tracking system. In: Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on IEEE, 2010, S. 86–89

[4] Dean, Jeff: Challenges in Building Large-Scale Information Retrieval Systems. (2009).
http://research.google.com/people/jeff/WSDM09-keynote.pdf

[5] Geer, D.: Chip makers turn to multicore processors. In: Computer 38 (2005), Nr. 5, S.
11–13

[6] golang.org: FAQ - The Go Programming Language. (2012). http://golang.org/
doc/go_faq.html#history

[7] Google: Encoding - Protocol Buffers. (2012). https://developers.google.com/
protocol-buffers/docs/encoding#varints

[8] Hidalgo Barea, A. et.al.: Analysis and evaluation of high performance web servers.
(2011). http://upcommons.upc.edu/pfc/bitstream/2099.1/12677/1/memoria.
pdf

[9] Lemire, Daniel ; Boytsov, Leonid: Decoding billions of integers per second through
vectorization. http://arxiv.org/pdf/1209.2137v1.pdf. Version: 2012

[10] Linden, Greg: Geeking with Greg: Marissa Mayer at Web 2.0. (2006). http://
glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html?m=1

[11] Mateos-Garcia, J. ; Steinmueller, W.E.: The institutions of open source software:
Examining the Debian community. In: Information Economics and Policy 20 (2008), Nr.
4, S. 333–344

[12] Nussbaum, Lucas ; Zacchiroli, Stefano: The Ultimate Debian Database: Consolidat-
ing Bazaar Metadata for Quality Assurance and Data Mining. In: 7th IEEE Working
Conference on Mining Software Repositories (MSR’2010). Cape Town, South Africa, 2010

[13] Pennarun, Reinholdtsen Allombert: Alioth: Debian Package Popularity Contest. (2003).
https://alioth.debian.org/projects/popcon/

58

http://swtch.com/~rsc/regexp/regexp4.html
http://swtch.com/~rsc/regexp/regexp4.html
http://research.google.com/people/jeff/WSDM09-keynote.pdf
http://golang.org/doc/go_faq.html#history
http://golang.org/doc/go_faq.html#history
https://developers.google.com/protocol-buffers/docs/encoding#varints
https://developers.google.com/protocol-buffers/docs/encoding#varints
http://upcommons.upc.edu/pfc/bitstream/2099.1/12677/1/memoria.pdf
http://upcommons.upc.edu/pfc/bitstream/2099.1/12677/1/memoria.pdf
http://arxiv.org/pdf/1209.2137v1.pdf
http://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html?m=1
http://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html?m=1
https://alioth.debian.org/projects/popcon/

Bibliography

[14] Pennarun, Reinholdtsen Allombert: Popularity-contest Frequently Asked Questions.
(2004). http://popcon.debian.org/FAQ

[15] Riel, Rik van: PageReplacementDesign - linux-mm.org Wiki. (2010). http://
linux-mm.org/PageReplacementDesign

[16] Schmager, F.: Evaluating the GO Programming Language with Design Patterns.
(2011). http://researcharchive.vuw.ac.nz/bitstream/handle/10063/1553/
thesis.pdf?sequence=1

[17] Thorpe, S. ; Fize, D. ; Marlot, C. et.al.: Speed of processing in the human visual system.
In: nature 381 (1996), Nr. 6582, S. 520–522

[18] W3Techs: Historical trends in the usage of web servers, July 2012. (2012). http:
//w3techs.com/technologies/history_overview/web_server

[19] WHITEHEAD II, J.: Serving Web Content with Dynamic Process Networks in Go.
(2011). http://www.cs.ox.ac.uk/people/jim.whitehead/cpa2011-draft.pdf

[20] Wikipedia: Bloom filter. http://en.wikipedia.org/w/index.php?title=Bloom_
filter&oldid=506427663. Version: 2012. – [Online; accessed 14-August-2012]

[21] Wikipedia: Debian — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/
w/index.php?title=Debian&oldid=518794222. Version: 2012. – [Online; accessed
26-October-2012]

[22] Wikipedia: Levenshtein distance — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=525823323.
Version: 2012. – [Online; accessed 7-December-2012]

[23] Wikipedia: N-gram — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/
w/index.php?title=N-gram&oldid=514951683. Version: 2012. – [Online; accessed
30-October-2012]

[24] Wikipedia: Page cache — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Page_cache&oldid=516103102. Version: 2012. – [Online;
accessed 11-November-2012]

[25] Wikipedia: Query optimizer — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Query_optimizer&oldid=521108336.
Version: 2012. – [Online; accessed 21-November-2012]

[26] Wikipedia: Regular expression — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Regular_expression&oldid=
525511640#POSIX. Version: 2012. – [Online; accessed 3-December-2012]

[27] Wikipedia: S.M.A.R.T. — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=S.M.A.R.T.&oldid=525820381. Version: 2012. – [Online;
accessed 7-December-2012]

59

http://popcon.debian.org/FAQ
http://linux-mm.org/PageReplacementDesign
http://linux-mm.org/PageReplacementDesign
http://researcharchive.vuw.ac.nz/bitstream/handle/10063/1553/thesis.pdf?sequence=1
http://researcharchive.vuw.ac.nz/bitstream/handle/10063/1553/thesis.pdf?sequence=1
http://w3techs.com/technologies/history_overview/web_server
http://w3techs.com/technologies/history_overview/web_server
http://www.cs.ox.ac.uk/people/jim.whitehead/cpa2011-draft.pdf
http://en.wikipedia.org/w/index.php?title=Bloom_filter&oldid=506427663
http://en.wikipedia.org/w/index.php?title=Bloom_filter&oldid=506427663
http://en.wikipedia.org/w/index.php?title=Debian&oldid=518794222
http://en.wikipedia.org/w/index.php?title=Debian&oldid=518794222
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=525823323
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=525823323
http://en.wikipedia.org/w/index.php?title=N-gram&oldid=514951683
http://en.wikipedia.org/w/index.php?title=N-gram&oldid=514951683
http://en.wikipedia.org/w/index.php?title=Page_cache&oldid=516103102
http://en.wikipedia.org/w/index.php?title=Page_cache&oldid=516103102
http://en.wikipedia.org/w/index.php?title=Query_optimizer&oldid=521108336
http://en.wikipedia.org/w/index.php?title=Query_optimizer&oldid=521108336
http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=525511640#POSIX
http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=525511640#POSIX
http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=525511640#POSIX
http://en.wikipedia.org/w/index.php?title=S.M.A.R.T.&oldid=525820381
http://en.wikipedia.org/w/index.php?title=S.M.A.R.T.&oldid=525820381

Bibliography

[28] Wikipedia: Solid-state drive — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Solid-state_drive&oldid=525844401.
Version: 2012. – [Online; accessed 3-December-2012]

[29] Witten, I.H. ; Moffat, A. ; Bell, T.C.: Managing gigabytes: compressing and indexing
documents and images. Morgan Kaufmann, 1999

[30] Zini, E.: A cute introduction to Debtags. In: Proceedings of the 5th annual Debian
Conference, 2005, 59–74

Most of the citations refer to publications which are accessible in the world wide web since
the subject matter is very recent.

60

http://en.wikipedia.org/w/index.php?title=Solid-state_drive&oldid=525844401
http://en.wikipedia.org/w/index.php?title=Solid-state_drive&oldid=525844401

List of Figures

3.1 High level overview of a request’s flow in Debian Code Search. 8
3.2 Architecture overview, showing which different processes are involved in

handling requests to Debian Code Search.1 9
3.3 Architecture overview with load-balancing possiblities. 10
3.4 The Codesearch index format. Trigram lookups are performed as described

below. 17
3.5 Trigram lookup time grows linearly with the query’s trigram count and loga-

rithmically with the index size. 33 queries with varying length were examined. 18
3.6 Posting list decoding time increases linearly with combined posting list length. 18
3.7 The optimized version written in C is faster for both small and large posting

lists. At sufficiently large posting lists, the C version is one order of magnitude
faster. 20

3.8 The simpler varint algorithm is as fast as group-varint for short posting
lists and even faster than group-varint for longer posting lists. 21

3.9 It takes only a fraction (≈ 1
3) of intersection steps to get to the final result R.

1500 random function and variable names have been tested. 23
3.10 With the heuristic explained above, the amount of false positives does not

exceed two files on average; the total speed-up is ≈ 2×. 23

4.1 Average mtime difference between the source package and its .c or .h files 35
4.2 Trigram lookup latency distribution by number of results. Each point repre-

sents one out of 1500 randomly chosen function or variable names. 41
4.3 Histogram of trigram lookup latency . 42
4.4 Source matching latency distribution by number of potential results (the

number of files which are searched for matches) 43
4.5 Histogram of source matching latency. Most source matching is done within

20ms, but the tail is considerably longer than for trigram lookup latency. . . 43
4.6 Comparison of response timing between HTTP benchmarking tool weighttp

and the dcs-internal measurements. The figure confirms that weighttp and
the internal measurements are working correctly. The lines differ slightly
due to overhead for request parsing and receiving the reply, which is not
contained in dcs-total. 49

4.7 On a quad-core processor, using four concurrent requests yields best results. 49
4.8 Most real-world requests are handled in less than one second. 51
4.9 Searching files takes the most time, followed by trigram index lookups. . . . 51
4.10 The trigram index lookup (“n-gram”) took almost as long as the actual search-

ing of files containing possible matches (“grep”) before optimization. 52
4.11 Optimizing the trigram lookup cuts the total time in half. 53

61

List of Figures

4.12 Replacing regular expression matching with a loop cuts the ranking time in
half. 53

7.1 Start page of Debian Code Search . 56
7.2 Search results for XCreateWindow . 57
7.3 Displaying source code . 57

62

List of Acronyms

BSD Berkeley Software Distribution

CSS Cascading Style Sheets, a language for describing how HTML content on a website
should look.

DBMS Database management system

DCS Debian Code Search

DNS Domain Name System, used for resolving hostnames such as www.heise.de to IP
addresses such as 2a02:2e0:3fe:100::8

DoS Denial of Service

DSA Debian System Administration

FOSS Free/libre Open Source Software

GCC GNU Compiler Collection

GCS Google Code Search

GTK GIMP Toolkit, a toolkit for creating graphical user interfaces

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol, a protocol used for accessing websites or webservices.

IDE Integrated Development Environment

LRU Least-recently Used

PAM Pluggable Authentication Modules

PNG Portable Network Graphics

POSIX Portable Operating System Interface

Qt pronounced “cute”, a framework for creating graphical user interfaces

SCM Source Control Management

S.M.A.R.T. Self-Monitoring, Analysis and Reporting Technology

SSD Solid State Disk

UUID Universally Unique Identifier

XML Extensible Markup Language

63

	1 Introduction
	2 Debian Code Search: An Overview
	2.1 Target audience and use cases
	2.2 Other search engines

	3 Architecture
	3.1 Architecture and user interface design principles
	3.2 Modifications to the Codesearch tools by Russ Cox
	3.2.1 Comparison to Google Code Search

	3.3 High level overview
	3.4 Architecture overview
	3.5 Resource requirements and load-balancing
	3.6 Programming language and software choice
	3.7 Source corpus size
	3.8 The trigram index
	3.8.1 Trigram index limitations
	3.8.2 Looking up trigrams in the index
	3.8.3 Lookup time, trigram count and index size
	3.8.4 Posting list decoding implementation
	3.8.5 Posting list encoding/decoding algorithm
	3.8.6 Posting list query optimization

	3.9 Updating the index
	3.10 Logging and monitoring
	3.10.1 Logging
	3.10.2 Monitoring

	3.11 Caching
	3.11.1 Implicit caching (page cache)
	3.11.2 Explicit caching

	4 Search result quality
	4.1 Metric definition
	4.2 Ranking
	4.2.1 Ranking factors which can be pre-computed per-package
	4.2.2 Ranking factors which depend on the query
	4.2.3 Ranking factors which depend on the actual results
	4.2.4 Popularity contest
	4.2.5 Reverse dependencies
	4.2.6 Modification time of source code files

	4.3 Sample search queries and expected results
	4.4 Result quality of Debian Code Search
	4.5 Result latency of Debian Code Search
	4.5.1 Trigram lookup latency
	4.5.2 Source matching latency

	4.6 Language bias
	4.7 Duplication in the archive
	4.8 Auto-generated source code
	4.9 Test setup, measurement data and source code
	4.10 Overall performance
	4.10.1 Measurement setup
	4.10.2 Queries per second by query term
	4.10.3 Queries per second, replayed logfile
	4.10.4 Real-world response times

	4.11 Performance by processing step (profiling)
	4.11.1 Before any optimization
	4.11.2 After optimizing the trigram index
	4.11.3 After re-implementing the ranking

	5 Conclusion
	6 Future Work
	7 Appendix A: Screenshots
	Bibliography
	List of Figures
	List of acronyms

